给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

def rand5():
    return random.randint(1,5)    #return random integers from 1 to 5

def rand7():
    rand = rand5()+rand5()-1
    if rand > 7:                  #if numbers > 7, call rand7() again
        return rand7()
    print rand%7 + 1

我想这将是最简单的解决方案,但到处都有人建议5*rand5() + rand5() - 5,如http://www.geeksforgeeks.org/generate-integer-from-1-to-7-with-equal-probability/。 有人能解释一下rand5()+rand5()-1有什么问题吗

其他回答

这个解决方案不浪费任何熵,并给出了范围内第一个可用的真正随机数。随着每一次迭代,得不到答案的概率可证明地降低了。在N次迭代中得到答案的概率是0到max (5^N)之间的随机数小于该范围内7的最大倍数(max-max%7)的概率。必须迭代至少两次。但这对所有解都是成立的。

int random7() {
  range = 1;
  remainder = 0;

  while (1) {
    remainder = remainder * 5 + random5() - 1;
    range = range * 5;

    limit = range - (range % 7);
    if (remainder < limit) return (remainder % 7) + 1;

    remainder = remainder % 7;
    range = range % 7;
  }
}

数值上等价于:

r5=5;
num=random5()-1;
while (1) {
   num=num*5+random5()-1;
   r5=r5*5;
   r7=r5-r5%7;
   if (num<r7) return num%7+1;
}

第一个代码以模形式计算。第二个代码只是简单的数学。或者我在某个地方犯了错误。: -)

我玩了一下,我为这个Rand(7)算法写了“测试环境”。例如,如果你想尝试哪种分布给你的算法,或者需要多少次迭代才能生成所有不同的随机值(对于Rand(7) 1-7),你可以使用它。

我的核心算法是:

return (Rand5() + Rand5()) % 7 + 1;

和亚当·罗森菲尔德的分布一样均匀。(我将其包含在代码片段中)

private static int Rand7WithRand5()
{
    //PUT YOU FAVOURITE ALGORITHM HERE//

    //1. Stackoverflow winner
    int i;
    do
    {
        i = 5 * (Rand5() - 1) + Rand5(); // i is now uniformly random between 1 and 25
    } while (i > 21);
    // i is now uniformly random between 1 and 21
    return i % 7 + 1;

    //My 2 cents
    //return (Rand5() + Rand5()) % 7 + 1;
}

这个“测试环境”可以采用任何Rand(n)算法并测试和评估它(分布和速度)。只需将代码放入“Rand7WithRand5”方法并运行代码片段。

一些观察:

亚当·罗森菲尔德(Adam Rosenfield)的算法并不比我的算法分布得更好。不管怎样,两种算法的分布都很糟糕。 本机Rand7(随机的。Next(1,8))完成,因为它在大约200+迭代中生成了给定间隔内的所有成员,Rand7WithRand5算法的顺序为10k(约30-70k) 真正的挑战不是编写从Rand(5)生成Rand(7)的方法,而是生成几乎均匀分布的值。

下面是一个利用c++ 11特性的答案

#include <functional>
#include <iostream>
#include <ostream>
#include <random>

int main()
{
    std::random_device rd;
    unsigned long seed = rd();
    std::cout << "seed = " << seed << std::endl;

    std::mt19937 engine(seed);

    std::uniform_int_distribution<> dist(1, 5);
    auto rand5 = std::bind(dist, engine);

    const int n = 20;
    for (int i = 0; i != n; ++i)
    {
        std::cout << rand5() << " ";
    }
    std::cout << std::endl;

    // Use a lambda expression to define rand7
    auto rand7 = [&rand5]()->int
    {
        for (int result = 0; ; result = 0)
        {
            // Take advantage of the fact that
            // 5**6 = 15625 = 15624 + 1 = 7 * (2232) + 1.
            // So we only have to discard one out of every 15625 numbers generated.

            // Generate a 6-digit number in base 5
            for (int i = 0; i != 6; ++i)
            {
                result = 5 * result + (rand5() - 1);
            }

            // result is in the range [0, 15625)
            if (result == 15625 - 1)
            {
                // Discard this number
                continue;
            }

            // We now know that result is in the range [0, 15624), a range that can
            // be divided evenly into 7 buckets guaranteeing uniformity
            result /= 2232;
            return 1 + result;
        }
    };

    for (int i = 0; i != n; ++i)
    {
        std::cout << rand7() << " ";
    }
    std::cout << std::endl;

    return 0;
}
int getOneToSeven(){
    int added = 0;
    for(int i = 1; i<=7; i++){
        added += getOneToFive();
    }
    return (added)%7+1;
}

这里似乎没有提到的另一个答案:

int rand7() {
  int r = 7 / 2;
  for (int i = 0; i < 28; i++)
    r = ((rand5() - 1) * 7 + r) / 5;
  return r + 1;
}

在每次迭代中,r是一个0到6之间的随机值。它被追加(以7为基数)到一个0到4(包括4)之间的随机值,结果除以5,得到一个0到6(包括6)范围内的新随机值。R开始时有很大的偏差(R = 3是非常有偏差的!),但每次迭代都将偏差除以5。

这种方法不是完全均匀的;然而,偏差是微乎其微的。数量级为1/(2**64)这种方法的重要之处在于它具有恒定的执行时间(假设rand5()也具有恒定的执行时间)。理论上不需要担心一个不走运的调用可能永远迭代地选择坏值。


此外,还有一个讽刺的回答(有意无意,它已经被覆盖了):

1-5已经在1-7的范围内,因此下面是一个有效的实现:

int rand7() {
  return rand5();
}

问题没有要求均匀分布。