给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

def rand5():
    return random.randint(1,5)    #return random integers from 1 to 5

def rand7():
    rand = rand5()+rand5()-1
    if rand > 7:                  #if numbers > 7, call rand7() again
        return rand7()
    print rand%7 + 1

我想这将是最简单的解决方案,但到处都有人建议5*rand5() + rand5() - 5,如http://www.geeksforgeeks.org/generate-integer-from-1-to-7-with-equal-probability/。 有人能解释一下rand5()+rand5()-1有什么问题吗

其他回答

下面是Adam回答的Python实现。

import random

def rand5():
    return random.randint(1, 5)

def rand7():
    while True:
        r = 5 * (rand5() - 1) + rand5()
        #r is now uniformly random between 1 and 25
        if (r <= 21):
            break
    #result is now uniformly random between 1 and 7
    return r % 7 + 1

我喜欢把我正在研究的算法扔进Python,这样我就可以摆弄它们,我想我把它贴在这里,希望它对外面的人有用,而不是花很长时间来拼凑。

通过使用滚动总数,您可以同时

保持平均分配;而且 不需要牺牲随机序列中的任何元素。

这两个问题都是简单的rand(5)+rand(5)…类型的解决方案。下面的Python代码展示了如何实现它(其中大部分是证明发行版)。

import random
x = []
for i in range (0,7):
    x.append (0)
t = 0
tt = 0
for i in range (0,700000):
    ########################################
    #####            qq.py             #####
    r = int (random.random () * 5)
    t = (t + r) % 7
    ########################################
    #####       qq_notsogood.py        #####
    #r = 20
    #while r > 6:
        #r =     int (random.random () * 5)
        #r = r + int (random.random () * 5)
    #t = r
    ########################################
    x[t] = x[t] + 1
    tt = tt + 1
high = x[0]
low = x[0]
for i in range (0,7):
    print "%d: %7d %.5f" % (i, x[i], 100.0 * x[i] / tt)
    if x[i] < low:
        low = x[i]
    if x[i] > high:
        high = x[i]
diff = high - low
print "Variation = %d (%.5f%%)" % (diff, 100.0 * diff / tt)

这个输出显示了结果:

pax$ python qq.py
0:   99908 14.27257
1:  100029 14.28986
2:  100327 14.33243
3:  100395 14.34214
4:   99104 14.15771
5:   99829 14.26129
6:  100408 14.34400
Variation = 1304 (0.18629%)

pax$ python qq.py
0:   99547 14.22100
1:  100229 14.31843
2:  100078 14.29686
3:   99451 14.20729
4:  100284 14.32629
5:  100038 14.29114
6:  100373 14.33900
Variation = 922 (0.13171%)

pax$ python qq.py
0:  100481 14.35443
1:   99188 14.16971
2:  100284 14.32629
3:  100222 14.31743
4:   99960 14.28000
5:   99426 14.20371
6:  100439 14.34843
Variation = 1293 (0.18471%)

一个简单的rand(5)+rand(5),忽略那些返回大于6的情况,其典型变化为18%,是上面所示方法的100倍:

pax$ python qq_notsogood.py
0:   31756 4.53657
1:   63304 9.04343
2:   95507 13.64386
3:  127825 18.26071
4:  158851 22.69300
5:  127567 18.22386
6:   95190 13.59857
Variation = 127095 (18.15643%)

pax$ python qq_notsogood.py
0:   31792 4.54171
1:   63637 9.09100
2:   95641 13.66300
3:  127627 18.23243
4:  158751 22.67871
5:  126782 18.11171
6:   95770 13.68143
Variation = 126959 (18.13700%)

pax$ python qq_notsogood.py
0:   31955 4.56500
1:   63485 9.06929
2:   94849 13.54986
3:  127737 18.24814
4:  159687 22.81243
5:  127391 18.19871
6:   94896 13.55657
Variation = 127732 (18.24743%)

并且,根据Nixuz的建议,我已经清理了脚本,所以您可以提取并使用rand7…材料:

import random

# rand5() returns 0 through 4 inclusive.

def rand5():
    return int (random.random () * 5)

# rand7() generator returns 0 through 6 inclusive (using rand5()).

def rand7():
    rand7ret = 0
    while True:
        rand7ret = (rand7ret + rand5()) % 7
        yield rand7ret

# Number of test runs.

count = 700000

# Work out distribution.

distrib = [0,0,0,0,0,0,0]
rgen =rand7()
for i in range (0,count):
    r = rgen.next()
    distrib[r] = distrib[r] + 1

# Print distributions and calculate variation.

high = distrib[0]
low = distrib[0]
for i in range (0,7):
    print "%d: %7d %.5f" % (i, distrib[i], 100.0 * distrib[i] / count)
    if distrib[i] < low:
        low = distrib[i]
    if distrib[i] > high:
        high = distrib[i]
diff = high - low
print "Variation = %d (%.5f%%)" % (diff, 100.0 * diff / count)
rand25() =5*(rand5()-1) + rand5()

rand7() { 
   while(true) {
       int r = rand25();
       if (r < 21) return r%3;         
   }
}

为什么这样做:循环永远运行的概率是0。

rand7() = (rand5()+rand5()+rand5()+rand5()+rand5()+rand5()+rand5())%7+1

编辑:这并不奏效。误差约为千分之二(假设是完美的rand5)。桶得到:

value   Count  Error%
1       11158  -0.0035
2       11144  -0.0214
3       11144  -0.0214
4       11158  -0.0035
5       11172  +0.0144
6       11177  +0.0208
7       11172  +0.0144

通过转换到的和

n   Error%
10  +/- 1e-3,
12  +/- 1e-4,
14  +/- 1e-5,
16  +/- 1e-6,
...
28  +/- 3e-11

似乎每增加2就增加一个数量级

BTW:上面的误差表不是通过采样产生的,而是通过以下递归关系产生的:

P [x,n]是给定n次调用rand5,输出=x可能发生的次数。

  p[1,1] ... p[5,1] = 1
  p[6,1] ... p[7,1] = 0

  p[1,n] = p[7,n-1] + p[6,n-1] + p[5,n-1] + p[4,n-1] + p[3,n-1]
  p[2,n] = p[1,n-1] + p[7,n-1] + p[6,n-1] + p[5,n-1] + p[4,n-1]
  p[3,n] = p[2,n-1] + p[1,n-1] + p[7,n-1] + p[6,n-1] + p[5,n-1]
  p[4,n] = p[3,n-1] + p[2,n-1] + p[1,n-1] + p[7,n-1] + p[6,n-1]
  p[5,n] = p[4,n-1] + p[3,n-1] + p[2,n-1] + p[1,n-1] + p[7,n-1]
  p[6,n] = p[5,n-1] + p[4,n-1] + p[3,n-1] + p[2,n-1] + p[1,n-1]
  p[7,n] = p[6,n-1] + p[5,n-1] + p[4,n-1] + p[3,n-1] + p[2,n-1]

这里我们使用约定的rand(n) -> [0, n - 1]

从我读到的许多答案中,它们要么提供了一致性,要么提供了暂停保证,但不能同时提供(adam rosenfeld的第二个答案可能)。

然而,这样做是可能的。我们基本上有这样的分布:

这给[0-6]上的分布留下了一个漏洞:5和6没有 发生的概率。想象一下,现在我们试图通过移动 概率分布和求和。

事实上,我们可以把初始分布平移1,然后 重复将得到的分布与移位的初始分布相加 2,然后3,以此类推,直到7,不包括在内(我们涵盖了整个范围)。 如下图所示。颜色的顺序,对应 步骤,是蓝色->绿色->青色->白色->品红->黄色->红色。

因为每个插槽由7个移位分布中的5个覆盖(移位从 0到6),因为我们假设随机数是独立于1的 Ran5()呼叫另一个,我们获得

p(x) = 5 / 35 = 1 / 7       for all x in [0, 6]

这意味着,给定来自ran5()的7个独立随机数,我们可以 计算一个在[0-6]范围内具有均匀概率的随机数。 实际上是ran5()概率 分布甚至不需要均匀,只要样本是均匀的 独立(所以每次试验的分布保持不变) 同样,这也适用于5和7之外的其他数字。

这为我们提供了以下python函数:

def rand_range_transform(rands):
    """
    returns a uniform random number in [0, len(rands) - 1]
    if all r in rands are independent random numbers from the same uniform distribution
    """
    return sum((x + i) for i, x in enumerate(rands)) % len(rands) # a single modulo outside the sum is enough in modulo arithmetic

可以这样使用:

rand5 = lambda : random.randrange(5)

def rand7():
    return rand_range_transform([rand5() for _ in range(7)])

如果我们调用rand7() 70000次,我们可以得到:

max: 6 min: 0 mean: 2.99711428571 std: 2.00194697049
0:  10019
1:  10016
2:  10071
3:  10044
4:  9775
5:  10042
6:  10033

这很好,尽管远非完美。事实上,我们的一个假设是 在这个实现中很可能是false:我们使用一个PRNG,因此,结果 的值依赖于上一个结果。

也就是说,使用一个真正随机的数字来源,输出也应该是 真正随机的。这个算法在任何情况下都终止。

但这是有代价的:我们需要为一个rand7()调用7次rand5() 调用。