给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

这个解决方案受到了Rob McAfee的启发。 然而,它不需要循环,结果是一个均匀分布:

// Returns 1-5
var rnd5 = function(){
   return parseInt(Math.random() * 5, 10) + 1;
}
// Helper
var lastEdge = 0;
// Returns 1-7
var rnd7 = function () {
  var map = [
     [ 1, 2, 3, 4, 5 ],
     [ 6, 7, 1, 2, 3 ],
     [ 4, 5, 6, 7, 1 ],
     [ 2, 3, 4, 5, 6 ],
     [ 7, 0, 0, 0, 0 ]
  ];
  var result = map[rnd5() - 1][rnd5() - 1];
  if (result > 0) {
    return result;
  }
  lastEdge++;
  if (lastEdge > 7 ) {
    lastEdge = 1;
  }
  return lastEdge;
};

// Test the a uniform distribution
results = {}; for(i=0; i < 700000;i++) { var rand = rnd7(); results[rand] = results[rand] ? results[rand] + 1 : 1;} 
console.log(results)

结果:[1:99560,2:99932,3:100355,4:100262,5:99603,6:100062,7:100226]

js小提琴

其他回答

这里允许作业题吗?

这个函数进行粗略的“以5为基数”的数学运算,生成0到6之间的数字。

function rnd7() {
    do {
        r1 = rnd5() - 1;
        do {
            r2=rnd5() - 1;
        } while (r2 > 1);
        result = r2 * 5 + r1;
    } while (result > 6);
    return result + 1;
}

对于范围[1,5]到[1,7],这相当于用一个5面骰子滚动一个7面骰子。

然而,如果不“浪费”随机性(或者在最坏的情况下永远运行),就无法做到这一点,因为7的所有质因数(即7)都不能整除5。因此,最好的方法是使用拒绝抽样来获得任意接近于不“浪费”随机性的结果(例如,将多个5面骰子摇到5^n“足够接近”7的幂)。这个问题的解决方案已经在其他答案中给出了。

更一般地说,用p面骰子掷k面骰子的算法将不可避免地“浪费”随机性(并且在最坏的情况下永远运行),除非“每个质数能除k也能除p”,根据B. Kloeckner的“用骰子模拟骰子”中的引理3。例如,举一个更实际的例子,p是2的幂,k是任意的。在这种情况下,这种“浪费”和无限的运行时间是不可避免的,除非k也是2的幂。

这类似于@RobMcAfee,除了我使用魔术数字而不是2维数组。

int rand7() {
    int m = 1203068;
    int r = (m >> (rand5() - 1) * 5 + rand5() - 1) & 7;

    return (r > 0) ? r : rand7();
}

//返回0-5之间概率相等的随机数 函数rand5() { return Math.floor(Math.random() * 6); } //返回0-7之间概率相等的随机数 函数rand7() { If (rand5() % 2 == 0 && rand5() % 2 == 0) { 返回6 + rand5() % 2; }其他{ 返回rand5 (); } } console.log (rand7 ());

因为1/7是一个以5为底的无限小数,所以没有(完全正确的)解可以在常数时间内运行。一个简单的解决方案是使用拒绝抽样,例如:


int i;
do
{
  i = 5 * (rand5() - 1) + rand5();  // i is now uniformly random between 1 and 25
} while(i > 21);
// i is now uniformly random between 1 and 21
return i % 7 + 1;  // result is now uniformly random between 1 and 7

这个循环的预期运行时间为25/21 = 1.19次迭代,但是永远循环的概率非常小。