给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

#!/usr/bin/env ruby
class Integer
  def rand7
    rand(6)+1
  end
end

def rand5
  rand(4)+1
end

x = rand5() # x => int between 1 and 5

y = x.rand7() # y => int between 1 and 7

..尽管这可能被认为是作弊。

其他回答

这相当于Adam Rosenfield的解决方案,但对一些读者来说可能更清楚一些。它假设rand5()是一个函数,返回1到5范围内的统计随机整数。

int rand7()
{
    int vals[5][5] = {
        { 1, 2, 3, 4, 5 },
        { 6, 7, 1, 2, 3 },
        { 4, 5, 6, 7, 1 },
        { 2, 3, 4, 5, 6 },
        { 7, 0, 0, 0, 0 }
    };

    int result = 0;
    while (result == 0)
    {
        int i = rand5();
        int j = rand5();
        result = vals[i-1][j-1];
    }
    return result;
}

How does it work? Think of it like this: imagine printing out this double-dimension array on paper, tacking it up to a dart board and randomly throwing darts at it. If you hit a non-zero value, it's a statistically random value between 1 and 7, since there are an equal number of non-zero values to choose from. If you hit a zero, just keep throwing the dart until you hit a non-zero. That's what this code is doing: the i and j indexes randomly select a location on the dart board, and if we don't get a good result, we keep throwing darts.

就像亚当说的,在最坏的情况下,它可以一直运行下去,但从统计上看,最坏的情况永远不会发生。:)

Python:有一个简单的两行答案,它使用空间代数和模量的组合。这不是直观的。我对它的解释令人困惑,但却是正确的。

知道5*7=35 7/5 = 1余数为2。如何保证余数之和始终为0?5*[7/5 = 1余数2]——> 35/5 = 7余数0

想象一下,我们有一条丝带,缠在一根周长为7的杆子上。丝带需要35个单位才能均匀地缠绕。随机选择7个色带片段len=[1…5]。忽略换行的有效长度与将rand5()转换为rand7()的方法相同。

import numpy as np
import pandas as pd
# display is a notebook function FYI
def rand5(): ## random uniform int [1...5]
    return np.random.randint(1,6)

n_trials = 1000
samples = [rand5() for _ in range(n_trials)]

display(pd.Series(samples).value_counts(normalize=True))
# 4    0.2042
# 5    0.2041
# 2    0.2010
# 1    0.1981
# 3    0.1926
# dtype: float64
    
def rand7(): # magic algebra
    x = sum(rand5() for _ in range(7))
    return x%7 + 1

samples = [rand7() for _ in range(n_trials)]

display(pd.Series(samples).value_counts(normalize=False))
# 6    1475
# 2    1475
# 3    1456
# 1    1423
# 7    1419
# 4    1393
# 5    1359
# dtype: int64
    
df = pd.DataFrame([
    pd.Series([rand7() for _ in range(n_trials)]).value_counts(normalize=True)
    for _ in range(1000)
])
df.describe()
#      1    2   3   4   5   6   7
# count 1000.000000 1000.000000 1000.000000 1000.000000 1000.000000 1000.000000 1000.000000
# mean  0.142885    0.142928    0.142523    0.142266    0.142704    0.143048    0.143646
# std   0.010807    0.011526    0.010966    0.011223    0.011052    0.010983    0.011153
# min   0.112000    0.108000    0.101000    0.110000    0.100000    0.109000    0.110000
# 25%   0.135000    0.135000    0.135000    0.135000    0.135000    0.135000    0.136000
# 50%   0.143000    0.142000    0.143000    0.142000    0.143000    0.142000    0.143000
# 75%   0.151000    0.151000    0.150000    0.150000    0.150000    0.150000    0.151000
# max   0.174000    0.181000    0.175000    0.178000    0.189000    0.176000    0.179000
extern int r5();

int r7() {
    return ((r5() & 0x01) << 2 ) | ((r5() & 0x01) << 1 ) | (r5() & 0x01);
}

亚当·罗森菲尔德正确答案的前提是:

X = 5^n(在他的例子中,n=2) 操作n个rand5次调用以获得范围[1,x]内的数字y Z = ((int)(x / 7)) * 7 如果y > z,再试一次。否则返回y % 7 + 1

当n = 2时,有4种可能:y ={22,23,24,25}。如果你使用n = 6,你只有1个扔掉的东西:y ={15625}。

5^6 is 15625 7 times 2232 is 15624

你又给rand5个电话。但是,您获得一个丢弃值(或无限循环)的机会要低得多。如果有办法让y没有可能的一次性值,我还没有找到它。

我玩了一下,我为这个Rand(7)算法写了“测试环境”。例如,如果你想尝试哪种分布给你的算法,或者需要多少次迭代才能生成所有不同的随机值(对于Rand(7) 1-7),你可以使用它。

我的核心算法是:

return (Rand5() + Rand5()) % 7 + 1;

和亚当·罗森菲尔德的分布一样均匀。(我将其包含在代码片段中)

private static int Rand7WithRand5()
{
    //PUT YOU FAVOURITE ALGORITHM HERE//

    //1. Stackoverflow winner
    int i;
    do
    {
        i = 5 * (Rand5() - 1) + Rand5(); // i is now uniformly random between 1 and 25
    } while (i > 21);
    // i is now uniformly random between 1 and 21
    return i % 7 + 1;

    //My 2 cents
    //return (Rand5() + Rand5()) % 7 + 1;
}

这个“测试环境”可以采用任何Rand(n)算法并测试和评估它(分布和速度)。只需将代码放入“Rand7WithRand5”方法并运行代码片段。

一些观察:

亚当·罗森菲尔德(Adam Rosenfield)的算法并不比我的算法分布得更好。不管怎样,两种算法的分布都很糟糕。 本机Rand7(随机的。Next(1,8))完成,因为它在大约200+迭代中生成了给定间隔内的所有成员,Rand7WithRand5算法的顺序为10k(约30-70k) 真正的挑战不是编写从Rand(5)生成Rand(7)的方法,而是生成几乎均匀分布的值。