给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。
当前回答
在php中
function rand1to7() {
do {
$output_value = 0;
for ($i = 0; $i < 28; $i++) {
$output_value += rand1to5();
}
while ($output_value != 140);
$output_value -= 12;
return floor($output_value / 16);
}
循环生成16到127之间的随机数,除以16生成1到7.9375之间的浮点数,然后舍入得到1到7之间的整数。如果我没记错的话,得到7个结果中的任何一个的概率都是16/112。
其他回答
int ans = 0;
while (ans == 0)
{
for (int i=0; i<3; i++)
{
while ((r = rand5()) == 3){};
ans += (r < 3) >> i
}
}
这个表达式足以得到1 - 7之间的随机整数
int j = ( rand5()*2 + 4 ) % 7 + 1;
与Martin的答案相似,但却很少抛弃熵:
int rand7(void) {
static int m = 1;
static int r = 0;
for (;;) {
while (m <= INT_MAX / 5) {
r = r + m * (rand5() - 1);
m = m * 5;
}
int q = m / 7;
if (r < q * 7) {
int i = r % 7;
r = r / 7;
m = q;
return i + 1;
}
r = r - q * 7;
m = m - q * 7;
}
}
在这里,我们在0到m-1之间建立一个随机值,并尝试通过添加尽可能多的状态来最大化m,而不会溢出(INT_MAX是C中适合int的最大值,或者您可以将其替换为任何在您的语言和体系结构中有意义的大值)。
然后;如果r落在能被7整除的最大可能区间内,那么它包含一个可行的结果,我们可以将这个区间除以7,取余数作为我们的结果,并将剩余的值返回到熵池。否则r在另一个不均匀的区间内我们就必须抛弃这个不拟合区间重新启动熵池。
与这里的流行答案相比,它调用rand5()的频率平均减少了一半。
为了提高性能,可以将除法分解为琐碎的比特旋转和lut。
int rand7() {
int value = rand5()
+ rand5() * 2
+ rand5() * 3
+ rand5() * 4
+ rand5() * 5
+ rand5() * 6;
return value%7;
}
与选定的解决方案不同,该算法将在常数时间内运行。然而,它对rand5的调用比所选解决方案的平均运行时间多2次。
请注意,这个生成器并不完美(数字0比任何其他数字都有0.0064%的可能性),但对于大多数实际目的,保证恒定的时间可能比这种不准确性更重要。
解释
这个解源于数字15624能被7整除的事实,因此,如果我们可以随机且均匀地生成从0到15624的数字,然后对7取余,我们就可以得到一个近乎均匀的rand7生成器。将rand5滚动6次,将0到15624之间的数字统一生成,并使用这些数字组成以5为基数的数字,如下所示:
rand5 * 5^5 + rand5 * 5^4 + rand5 * 5^3 + rand5 * 5^2 + rand5 * 5 + rand5
mod 7的属性允许我们稍微简化一下方程:
5^5 = 3 mod 7
5^4 = 2 mod 7
5^3 = 6 mod 7
5^2 = 4 mod 7
5^1 = 5 mod 7
So
rand5 * 5^5 + rand5 * 5^4 + rand5 * 5^3 + rand5 * 5^2 + rand5 * 5 + rand5
就变成了
rand5 * 3 + rand5 * 2 + rand5 * 6 + rand5 * 4 + rand5 * 5 + rand5
理论
15624这个数字不是随机选择的,而是可以用费马小定理来发现的,该定理指出,如果p是质数,那么
a^(p-1) = 1 mod p
这就得到,
(5^6)-1 = 0 mod 7
(5^6)-1等于
4 * 5^5 + 4 * 5^4 + 4 * 5^3 + 4 * 5^2 + 4 * 5 + 4
这是一个以5为底的数,因此我们可以看到,这种方法可以用于从任何随机数发生器到任何其他随机数发生器。尽管在使用指数p-1时总是会引入对0的小偏差。
为了更准确地推广这种方法,我们可以有这样一个函数:
def getRandomconverted(frm, to):
s = 0
for i in range(to):
s += getRandomUniform(frm)*frm**i
mx = 0
for i in range(to):
mx = (to-1)*frm**i
mx = int(mx/to)*to # maximum value till which we can take mod
if s < mx:
return s%to
else:
return getRandomconverted(frm, to)
我想到了一个解决这个问题的有趣方法,想和大家分享一下。
function rand7() {
var returnVal = 4;
for (var n=0; n<3; n++) {
var rand = rand5();
if (rand==1||rand==2){
returnVal+=1;
}
else if (rand==3||rand==4) {
returnVal-=1;
}
}
return returnVal;
}
我构建了一个测试函数,循环rand7() 10,000次,将所有返回值相加,然后除以10,000。如果rand7()工作正常,我们计算的平均值应该是4 -例如,(1+2+3+4+5+6+7 / 7)= 4。在做了多次测试后,平均值确实是4:)