给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。
当前回答
这个问题的主要概念是关于正态分布的,这里提供了一个简单的递归解决这个问题的方法
假设我们已经在我们的作用域中有rand5():
def rand7():
# twoway = 0 or 1 in the same probability
twoway = None
while not twoway in (1, 2):
twoway = rand5()
twoway -= 1
ans = rand5() + twoway * 5
return ans if ans in range(1,8) else rand7()
解释
我们可以把这个程序分成两个部分:
循环rand5()直到我们找到1或2,这意味着我们有1/2的概率在变量中有1或2 复合ans by rand5() + twoway * 5,这正是rand10()的结果,如果这不符合我们的需要(1~7),然后我们再次运行rand7。
附注:我们不能在第二部分直接运行while循环,因为双向的每个概率都需要是单独的。
但是有一个权衡,因为第一部分中的while循环和return语句中的递归,这个函数不能保证执行时间,它实际上是无效的。
结果
我做了一个简单的测试来观察我的答案的分布。
result = [ rand7() for x in xrange(777777) ]
ans = {
1: 0,
2: 0,
3: 0,
4: 0,
5: 0,
6: 0,
7: 0,
}
for i in result:
ans[i] += 1
print ans
它给了
{1: 111170, 2: 110693, 3: 110651, 4: 111260, 5: 111197, 6: 111502, 7: 111304}
因此,我们可以知道这个答案是正态分布。
简单的答案
如果你不关心这个函数的执行时间,下面是一个基于我上面给出的答案的简化答案:
def rand7():
ans = rand5() + (rand5()-1) * 5
return ans if ans < 8 else rand7()
这增加了大于8的值的概率,但这可能是这个问题的最短答案。
其他回答
简单高效:
int rand7 ( void )
{
return 4; // this number has been calculated using
// rand5() and is in the range 1..7
}
(灵感来自你最喜欢的“程序员”卡通?)
下面使用随机数发生器在{1,2,3,4,5,6,7}上产生均匀分布,在{1,2,3,4,5}上产生均匀分布。代码很混乱,但逻辑很清晰。
public static int random_7(Random rg) {
int returnValue = 0;
while (returnValue == 0) {
for (int i = 1; i <= 3; i++) {
returnValue = (returnValue << 1) + SimulateFairCoin(rg);
}
}
return returnValue;
}
private static int SimulateFairCoin(Random rg) {
while (true) {
int flipOne = random_5_mod_2(rg);
int flipTwo = random_5_mod_2(rg);
if (flipOne == 0 && flipTwo == 1) {
return 0;
}
else if (flipOne == 1 && flipTwo == 0) {
return 1;
}
}
}
private static int random_5_mod_2(Random rg) {
return random_5(rg) % 2;
}
private static int random_5(Random rg) {
return rg.Next(5) + 1;
}
以下是我的回答:
static struct rand_buffer {
unsigned v, count;
} buf2, buf3;
void push (struct rand_buffer *buf, unsigned n, unsigned v)
{
buf->v = buf->v * n + v;
++buf->count;
}
#define PUSH(n, v) push (&buf##n, n, v)
int rand16 (void)
{
int v = buf2.v & 0xf;
buf2.v >>= 4;
buf2.count -= 4;
return v;
}
int rand9 (void)
{
int v = buf3.v % 9;
buf3.v /= 9;
buf3.count -= 2;
return v;
}
int rand7 (void)
{
if (buf3.count >= 2) {
int v = rand9 ();
if (v < 7)
return v % 7 + 1;
PUSH (2, v - 7);
}
for (;;) {
if (buf2.count >= 4) {
int v = rand16 ();
if (v < 14) {
PUSH (2, v / 7);
return v % 7 + 1;
}
PUSH (2, v - 14);
}
// Get a number between 0 & 25
int v = 5 * (rand5 () - 1) + rand5 () - 1;
if (v < 21) {
PUSH (3, v / 7);
return v % 7 + 1;
}
v -= 21;
PUSH (2, v & 1);
PUSH (2, v >> 1);
}
}
它比其他的稍微复杂一点,但我相信它最小化了对rand5的调用。与其他解决方案一样,它有小概率会循环很长时间。
(我剽窃了亚当·罗森菲尔德的答案,使其运行速度提高了7%左右。)
假设rand5()返回分布相等的{0,1,2,3,4}中的一个,目标是返回分布相等的{0,1,2,3,4,5,6}。
int rand7() {
i = 5 * rand5() + rand5();
max = 25;
//i is uniform among {0 ... max-1}
while(i < max%7) {
//i is uniform among {0 ... (max%7 - 1)}
i *= 5;
i += rand5(); //i is uniform {0 ... (((max%7)*5) - 1)}
max %= 7;
max *= 5; //once again, i is uniform among {0 ... max-1}
}
return(i%7);
}
我们在跟踪这个循环在变量max中所能产生的最大值。如果到目前为止的结果在max%7和max-1之间,那么结果将均匀分布在该范围内。如果不是,则使用余数,余数是0到max%7-1之间的随机数,然后再次调用rand()来生成一个新的数字和一个新的max。然后我们重新开始。
编辑:在这个方程中,期望调用rand5()的次数是x:
x = 2 * 21/25
+ 3 * 4/25 * 14/20
+ 4 * 4/25 * 6/20 * 28/30
+ 5 * 4/25 * 6/20 * 2/30 * 7/10
+ 6 * 4/25 * 6/20 * 2/30 * 3/10 * 14/15
+ (6+x) * 4/25 * 6/20 * 2/30 * 3/10 * 1/15
x = about 2.21 calls to rand5()
#!/usr/bin/env ruby
class Integer
def rand7
rand(6)+1
end
end
def rand5
rand(4)+1
end
x = rand5() # x => int between 1 and 5
y = x.rand7() # y => int between 1 and 7
..尽管这可能被认为是作弊。