给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。
当前回答
这个问题的主要概念是关于正态分布的,这里提供了一个简单的递归解决这个问题的方法
假设我们已经在我们的作用域中有rand5():
def rand7():
# twoway = 0 or 1 in the same probability
twoway = None
while not twoway in (1, 2):
twoway = rand5()
twoway -= 1
ans = rand5() + twoway * 5
return ans if ans in range(1,8) else rand7()
解释
我们可以把这个程序分成两个部分:
循环rand5()直到我们找到1或2,这意味着我们有1/2的概率在变量中有1或2 复合ans by rand5() + twoway * 5,这正是rand10()的结果,如果这不符合我们的需要(1~7),然后我们再次运行rand7。
附注:我们不能在第二部分直接运行while循环,因为双向的每个概率都需要是单独的。
但是有一个权衡,因为第一部分中的while循环和return语句中的递归,这个函数不能保证执行时间,它实际上是无效的。
结果
我做了一个简单的测试来观察我的答案的分布。
result = [ rand7() for x in xrange(777777) ]
ans = {
1: 0,
2: 0,
3: 0,
4: 0,
5: 0,
6: 0,
7: 0,
}
for i in result:
ans[i] += 1
print ans
它给了
{1: 111170, 2: 110693, 3: 110651, 4: 111260, 5: 111197, 6: 111502, 7: 111304}
因此,我们可以知道这个答案是正态分布。
简单的答案
如果你不关心这个函数的执行时间,下面是一个基于我上面给出的答案的简化答案:
def rand7():
ans = rand5() + (rand5()-1) * 5
return ans if ans < 8 else rand7()
这增加了大于8的值的概率,但这可能是这个问题的最短答案。
其他回答
我不喜欢从1开始的范围,所以我将从0开始:-)
unsigned rand5()
{
return rand() % 5;
}
unsigned rand7()
{
int r;
do
{
r = rand5();
r = r * 5 + rand5();
r = r * 5 + rand5();
r = r * 5 + rand5();
r = r * 5 + rand5();
r = r * 5 + rand5();
} while (r > 15623);
return r / 2232;
}
这里是我的一般实现,在给定一个范围为[0,B-1]的均匀发生器的情况下,生成范围为[0,N-1]的均匀。
public class RandomUnif {
public static final int BASE_NUMBER = 5;
private static Random rand = new Random();
/** given generator, returns uniform integer in the range 0.. BASE_NUMBER-1
public static int randomBASE() {
return rand.nextInt(BASE_NUMBER);
}
/** returns uniform integer in the range 0..n-1 using randomBASE() */
public static int randomUnif(int n) {
int rand, factor;
if( n <= 1 ) return 0;
else if( n == BASE_NUMBER ) return randomBASE();
if( n < BASE_NUMBER ) {
factor = BASE_NUMBER / n;
do
rand = randomBASE() / factor;
while(rand >= n);
return rand;
} else {
factor = (n - 1) / BASE_NUMBER + 1;
do {
rand = factor * randomBASE() + randomUnif(factor);
} while(rand >= n);
return rand;
}
}
}
不是特别高效,但一般和紧凑。对基生成器的均值调用:
n calls
2 1.250
3 1.644
4 1.252
5 1.000
6 3.763
7 3.185
8 2.821
9 2.495
10 2.250
11 3.646
12 3.316
13 3.060
14 2.853
15 2.650
16 2.814
17 2.644
18 2.502
19 2.361
20 2.248
21 2.382
22 2.277
23 2.175
24 2.082
25 2.000
26 5.472
27 5.280
28 5.119
29 4.899
如果我们考虑尝试给出最有效答案的附加约束,即给定一个长度为m(1-5)的均匀分布整数的输入流I,输出一个长度为m(1-7)的均匀分布整数的流O,长度为L(m)。
最简单的分析方法是将流I和O分别视为5元数和7元数。这是通过主答案的思想来实现的,即取流a1, a2, a3,…- > a1 + a2 + 5 * 5 ^ 2 * a3 + . .流O也是如此。
然后如果我们取长度为m的输入流的一段,选n s.t, 5^m-7^n=c,其中c>0,且尽可能小。然后有一个从长度为m的输入流到1到5^m的整数的统一映射,还有一个从1到7^n的整数到长度为n的输出流的统一映射,当映射的整数超过7^n时,我们可能不得不从输入流中丢失一些情况。
这就给出了L(m)的值约为m (log5/log7)也就是。82米。
上述分析的难点是方程5^m-7^n=c,它不容易精确求解,而在1到5^m的均匀值超过7^n的情况下,我们失去了效率。
问题是如何接近m (log5/log7)的最佳可能值。例如,当这个数字接近一个整数时,我们能否找到一种方法来实现这个精确的整数值输出?
如果5^m-7^n=c,那么从输入流中,我们有效地生成了一个从0到(5^m)-1的均匀随机数,并且不使用任何高于7^n的值。但是,这些值可以被保存并再次使用。它们有效地生成了从1到5^m-7^n的统一数字序列。所以我们可以尝试使用这些,并将它们转换成7位数,这样我们就可以创建更多的输出值。
如果我们让T7(X)是由大小为X的均匀输入导出的随机(1-7)整数的输出序列的平均长度,并假设5^m=7^n0+7^n1+7^n2+…+ 7 ^ nr + s, s < 7。
那么T7(5^m)=n0x7^n0/5^m + ((5^m-7^n0)/5^m) T7(5^m-7^n0)因为我们有一个无长度序列,概率为7^n0/5^m,残差长度为5^m-7^n0,概率为(5^m-7^n0)/5^m)。
如果我们一直代入,我们得到:
T7(5^m) = n0x7^n0/5^m + n1x7^n1/5^m + ... + nrx7^nr/5^m = (n0x7^n0 + n1x7^n1 + ... + nrx7^nr)/5^m
因此
L(m)=T7(5^m)=(n0x7^n0 + n1x7^n1 + ... + nrx7^nr)/(7^n0+7^n1+7^n2+...+7^nr+s)
另一种说法是:
If 5^m has 7-ary representation `a0+a1*7 + a2*7^2 + a3*7^3+...+ar*7^r
Then L(m) = (a1*7 + 2a2*7^2 + 3a3*7^3+...+rar*7^r)/(a0+a1*7 + a2*7^2 + a3*7^3+...+ar*7^r)
最好的情况是上面的原始情况,即5^m=7^n+s,其中s<7。
然后机械师》(5 ^ m) = nx (7 ^ n) / (7 ^ n + s) = o (n + 1) = m (Log5 / Log7) + o(1)美国之前。
最坏的情况是我们只能找到k和s.t 5^m = kx7+s。
Then T7(5^m) = 1x(k.7)/(k.7+s) = 1+o(1)
其他情况介于两者之间。看看对于很大的m,我们能做得多好,也就是说,我们能多好地得到误差项,这将是很有趣的:
T7(5^m) = m (Log5/Log7)+e(m)
一般来说,似乎不可能实现e(m)=o(1)但希望我们可以证明e(m)=o(m)。
整个问题取决于5^m的7位数字对不同m值的分布。
我相信有很多理论涵盖了这一点,我可能会在某个时候看一看并报告。
我玩了一下,我为这个Rand(7)算法写了“测试环境”。例如,如果你想尝试哪种分布给你的算法,或者需要多少次迭代才能生成所有不同的随机值(对于Rand(7) 1-7),你可以使用它。
我的核心算法是:
return (Rand5() + Rand5()) % 7 + 1;
和亚当·罗森菲尔德的分布一样均匀。(我将其包含在代码片段中)
private static int Rand7WithRand5()
{
//PUT YOU FAVOURITE ALGORITHM HERE//
//1. Stackoverflow winner
int i;
do
{
i = 5 * (Rand5() - 1) + Rand5(); // i is now uniformly random between 1 and 25
} while (i > 21);
// i is now uniformly random between 1 and 21
return i % 7 + 1;
//My 2 cents
//return (Rand5() + Rand5()) % 7 + 1;
}
这个“测试环境”可以采用任何Rand(n)算法并测试和评估它(分布和速度)。只需将代码放入“Rand7WithRand5”方法并运行代码片段。
一些观察:
亚当·罗森菲尔德(Adam Rosenfield)的算法并不比我的算法分布得更好。不管怎样,两种算法的分布都很糟糕。 本机Rand7(随机的。Next(1,8))完成,因为它在大约200+迭代中生成了给定间隔内的所有成员,Rand7WithRand5算法的顺序为10k(约30-70k) 真正的挑战不是编写从Rand(5)生成Rand(7)的方法,而是生成几乎均匀分布的值。
rand7() = (rand5()+rand5()+rand5()+rand5()+rand5()+rand5()+rand5())%7+1
编辑:这并不奏效。误差约为千分之二(假设是完美的rand5)。桶得到:
value Count Error%
1 11158 -0.0035
2 11144 -0.0214
3 11144 -0.0214
4 11158 -0.0035
5 11172 +0.0144
6 11177 +0.0208
7 11172 +0.0144
通过转换到的和
n Error%
10 +/- 1e-3,
12 +/- 1e-4,
14 +/- 1e-5,
16 +/- 1e-6,
...
28 +/- 3e-11
似乎每增加2就增加一个数量级
BTW:上面的误差表不是通过采样产生的,而是通过以下递归关系产生的:
P [x,n]是给定n次调用rand5,输出=x可能发生的次数。
p[1,1] ... p[5,1] = 1
p[6,1] ... p[7,1] = 0
p[1,n] = p[7,n-1] + p[6,n-1] + p[5,n-1] + p[4,n-1] + p[3,n-1]
p[2,n] = p[1,n-1] + p[7,n-1] + p[6,n-1] + p[5,n-1] + p[4,n-1]
p[3,n] = p[2,n-1] + p[1,n-1] + p[7,n-1] + p[6,n-1] + p[5,n-1]
p[4,n] = p[3,n-1] + p[2,n-1] + p[1,n-1] + p[7,n-1] + p[6,n-1]
p[5,n] = p[4,n-1] + p[3,n-1] + p[2,n-1] + p[1,n-1] + p[7,n-1]
p[6,n] = p[5,n-1] + p[4,n-1] + p[3,n-1] + p[2,n-1] + p[1,n-1]
p[7,n] = p[6,n-1] + p[5,n-1] + p[4,n-1] + p[3,n-1] + p[2,n-1]