给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

这个问题的主要概念是关于正态分布的,这里提供了一个简单的递归解决这个问题的方法

假设我们已经在我们的作用域中有rand5():

def rand7():
    # twoway = 0 or 1 in the same probability
    twoway = None
    while not twoway in (1, 2):
        twoway = rand5()
    twoway -= 1

    ans = rand5() + twoway * 5

    return ans if ans in range(1,8) else rand7()

解释

我们可以把这个程序分成两个部分:

循环rand5()直到我们找到1或2,这意味着我们有1/2的概率在变量中有1或2 复合ans by rand5() + twoway * 5,这正是rand10()的结果,如果这不符合我们的需要(1~7),然后我们再次运行rand7。

附注:我们不能在第二部分直接运行while循环,因为双向的每个概率都需要是单独的。

但是有一个权衡,因为第一部分中的while循环和return语句中的递归,这个函数不能保证执行时间,它实际上是无效的。

结果

我做了一个简单的测试来观察我的答案的分布。

result = [ rand7() for x in xrange(777777) ]

ans = {
    1: 0,
    2: 0,
    3: 0,
    4: 0,
    5: 0,
    6: 0,
    7: 0,
}

for i in result:
    ans[i] += 1

print ans

它给了

{1: 111170, 2: 110693, 3: 110651, 4: 111260, 5: 111197, 6: 111502, 7: 111304}

因此,我们可以知道这个答案是正态分布。

简单的答案

如果你不关心这个函数的执行时间,下面是一个基于我上面给出的答案的简化答案:

def rand7():
    ans = rand5() + (rand5()-1) * 5
    return ans if ans < 8 else rand7()

这增加了大于8的值的概率,但这可能是这个问题的最短答案。

其他回答

简单高效:

int rand7 ( void )
{
    return 4; // this number has been calculated using
              // rand5() and is in the range 1..7
}

(灵感来自你最喜欢的“程序员”卡通?)

下面使用随机数发生器在{1,2,3,4,5,6,7}上产生均匀分布,在{1,2,3,4,5}上产生均匀分布。代码很混乱,但逻辑很清晰。

public static int random_7(Random rg) {
    int returnValue = 0;
    while (returnValue == 0) {
        for (int i = 1; i <= 3; i++) {
            returnValue = (returnValue << 1) + SimulateFairCoin(rg);
        }
    }
    return returnValue;
}

private static int SimulateFairCoin(Random rg) {
    while (true) {
        int flipOne = random_5_mod_2(rg);
        int flipTwo = random_5_mod_2(rg);

        if (flipOne == 0 && flipTwo == 1) {
            return 0;
        }
        else if (flipOne == 1 && flipTwo == 0) {
            return 1;
        }
    }
}

private static int random_5_mod_2(Random rg) {
    return random_5(rg) % 2;
}

private static int random_5(Random rg) {
    return rg.Next(5) + 1;
}    

以下是我的回答:

static struct rand_buffer {
  unsigned v, count;
} buf2, buf3;

void push (struct rand_buffer *buf, unsigned n, unsigned v)
{
  buf->v = buf->v * n + v;
  ++buf->count;
}

#define PUSH(n, v)  push (&buf##n, n, v)

int rand16 (void)
{
  int v = buf2.v & 0xf;
  buf2.v >>= 4;
  buf2.count -= 4;
  return v;
}

int rand9 (void)
{
  int v = buf3.v % 9;
  buf3.v /= 9;
  buf3.count -= 2;
  return v;
}

int rand7 (void)
{
  if (buf3.count >= 2) {
    int v = rand9 ();

    if (v < 7)
      return v % 7 + 1;

    PUSH (2, v - 7);
  }

  for (;;) {
    if (buf2.count >= 4) {
      int v = rand16 ();

      if (v < 14) {
        PUSH (2, v / 7);
        return v % 7 + 1;
      }

      PUSH (2, v - 14);
    }

    // Get a number between 0 & 25
    int v = 5 * (rand5 () - 1) + rand5 () - 1;

    if (v < 21) {
      PUSH (3, v / 7);
      return v % 7 + 1;
    }

    v -= 21;
    PUSH (2, v & 1);
    PUSH (2, v >> 1);
  }
}

它比其他的稍微复杂一点,但我相信它最小化了对rand5的调用。与其他解决方案一样,它有小概率会循环很长时间。

(我剽窃了亚当·罗森菲尔德的答案,使其运行速度提高了7%左右。)

假设rand5()返回分布相等的{0,1,2,3,4}中的一个,目标是返回分布相等的{0,1,2,3,4,5,6}。

int rand7() {
  i = 5 * rand5() + rand5();
  max = 25;
  //i is uniform among {0 ... max-1}
  while(i < max%7) {
    //i is uniform among {0 ... (max%7 - 1)}
    i *= 5;
    i += rand5(); //i is uniform {0 ... (((max%7)*5) - 1)}
    max %= 7;
    max *= 5; //once again, i is uniform among {0 ... max-1}
  }
  return(i%7);
}

我们在跟踪这个循环在变量max中所能产生的最大值。如果到目前为止的结果在max%7和max-1之间,那么结果将均匀分布在该范围内。如果不是,则使用余数,余数是0到max%7-1之间的随机数,然后再次调用rand()来生成一个新的数字和一个新的max。然后我们重新开始。

编辑:在这个方程中,期望调用rand5()的次数是x:

x =  2     * 21/25
   + 3     *  4/25 * 14/20
   + 4     *  4/25 *  6/20 * 28/30
   + 5     *  4/25 *  6/20 *  2/30 * 7/10
   + 6     *  4/25 *  6/20 *  2/30 * 3/10 * 14/15
   + (6+x) *  4/25 *  6/20 *  2/30 * 3/10 *  1/15
x = about 2.21 calls to rand5()
#!/usr/bin/env ruby
class Integer
  def rand7
    rand(6)+1
  end
end

def rand5
  rand(4)+1
end

x = rand5() # x => int between 1 and 5

y = x.rand7() # y => int between 1 and 7

..尽管这可能被认为是作弊。