给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

这个问题的主要概念是关于正态分布的,这里提供了一个简单的递归解决这个问题的方法

假设我们已经在我们的作用域中有rand5():

def rand7():
    # twoway = 0 or 1 in the same probability
    twoway = None
    while not twoway in (1, 2):
        twoway = rand5()
    twoway -= 1

    ans = rand5() + twoway * 5

    return ans if ans in range(1,8) else rand7()

解释

我们可以把这个程序分成两个部分:

循环rand5()直到我们找到1或2,这意味着我们有1/2的概率在变量中有1或2 复合ans by rand5() + twoway * 5,这正是rand10()的结果,如果这不符合我们的需要(1~7),然后我们再次运行rand7。

附注:我们不能在第二部分直接运行while循环,因为双向的每个概率都需要是单独的。

但是有一个权衡,因为第一部分中的while循环和return语句中的递归,这个函数不能保证执行时间,它实际上是无效的。

结果

我做了一个简单的测试来观察我的答案的分布。

result = [ rand7() for x in xrange(777777) ]

ans = {
    1: 0,
    2: 0,
    3: 0,
    4: 0,
    5: 0,
    6: 0,
    7: 0,
}

for i in result:
    ans[i] += 1

print ans

它给了

{1: 111170, 2: 110693, 3: 110651, 4: 111260, 5: 111197, 6: 111502, 7: 111304}

因此,我们可以知道这个答案是正态分布。

简单的答案

如果你不关心这个函数的执行时间,下面是一个基于我上面给出的答案的简化答案:

def rand7():
    ans = rand5() + (rand5()-1) * 5
    return ans if ans < 8 else rand7()

这增加了大于8的值的概率,但这可能是这个问题的最短答案。

其他回答

以下是我的发现:

Random5产生1~5的范围,随机分布 如果我们运行3次并将它们加在一起,我们将得到3~15个随机分布的范围 在3~15范围内执行算术 (3~15) - 1 = (2~14) (2~14)/2 = (1~7)

然后我们得到1~7的范围,这是我们正在寻找的Random7。

这里允许作业题吗?

这个函数进行粗略的“以5为基数”的数学运算,生成0到6之间的数字。

function rnd7() {
    do {
        r1 = rnd5() - 1;
        do {
            r2=rnd5() - 1;
        } while (r2 > 1);
        result = r2 * 5 + r1;
    } while (result > 6);
    return result + 1;
}

只需要缩放第一个函数的输出

0) you have a number in range 1-5
1) subtract 1 to make it in range 0-4
2) multiply by (7-1)/(5-1) to make it in range 0-6
3) add 1 to increment the range: Now your result is in between 1-7

下面使用随机数发生器在{1,2,3,4,5,6,7}上产生均匀分布,在{1,2,3,4,5}上产生均匀分布。代码很混乱,但逻辑很清晰。

public static int random_7(Random rg) {
    int returnValue = 0;
    while (returnValue == 0) {
        for (int i = 1; i <= 3; i++) {
            returnValue = (returnValue << 1) + SimulateFairCoin(rg);
        }
    }
    return returnValue;
}

private static int SimulateFairCoin(Random rg) {
    while (true) {
        int flipOne = random_5_mod_2(rg);
        int flipTwo = random_5_mod_2(rg);

        if (flipOne == 0 && flipTwo == 1) {
            return 0;
        }
        else if (flipOne == 1 && flipTwo == 0) {
            return 1;
        }
    }
}

private static int random_5_mod_2(Random rg) {
    return random_5(rg) % 2;
}

private static int random_5(Random rg) {
    return rg.Next(5) + 1;
}    

如果我们考虑尝试给出最有效答案的附加约束,即给定一个长度为m(1-5)的均匀分布整数的输入流I,输出一个长度为m(1-7)的均匀分布整数的流O,长度为L(m)。

最简单的分析方法是将流I和O分别视为5元数和7元数。这是通过主答案的思想来实现的,即取流a1, a2, a3,…- > a1 + a2 + 5 * 5 ^ 2 * a3 + . .流O也是如此。

然后如果我们取长度为m的输入流的一段,选n s.t, 5^m-7^n=c,其中c>0,且尽可能小。然后有一个从长度为m的输入流到1到5^m的整数的统一映射,还有一个从1到7^n的整数到长度为n的输出流的统一映射,当映射的整数超过7^n时,我们可能不得不从输入流中丢失一些情况。

这就给出了L(m)的值约为m (log5/log7)也就是。82米。

上述分析的难点是方程5^m-7^n=c,它不容易精确求解,而在1到5^m的均匀值超过7^n的情况下,我们失去了效率。

问题是如何接近m (log5/log7)的最佳可能值。例如,当这个数字接近一个整数时,我们能否找到一种方法来实现这个精确的整数值输出?

如果5^m-7^n=c,那么从输入流中,我们有效地生成了一个从0到(5^m)-1的均匀随机数,并且不使用任何高于7^n的值。但是,这些值可以被保存并再次使用。它们有效地生成了从1到5^m-7^n的统一数字序列。所以我们可以尝试使用这些,并将它们转换成7位数,这样我们就可以创建更多的输出值。

如果我们让T7(X)是由大小为X的均匀输入导出的随机(1-7)整数的输出序列的平均长度,并假设5^m=7^n0+7^n1+7^n2+…+ 7 ^ nr + s, s < 7。

那么T7(5^m)=n0x7^n0/5^m + ((5^m-7^n0)/5^m) T7(5^m-7^n0)因为我们有一个无长度序列,概率为7^n0/5^m,残差长度为5^m-7^n0,概率为(5^m-7^n0)/5^m)。

如果我们一直代入,我们得到:

T7(5^m) = n0x7^n0/5^m + n1x7^n1/5^m + ... + nrx7^nr/5^m  = (n0x7^n0 + n1x7^n1 + ... + nrx7^nr)/5^m

因此

L(m)=T7(5^m)=(n0x7^n0 + n1x7^n1 + ... + nrx7^nr)/(7^n0+7^n1+7^n2+...+7^nr+s)

另一种说法是:

If 5^m has 7-ary representation `a0+a1*7 + a2*7^2 + a3*7^3+...+ar*7^r
Then L(m) = (a1*7 + 2a2*7^2 + 3a3*7^3+...+rar*7^r)/(a0+a1*7 + a2*7^2 + a3*7^3+...+ar*7^r)

最好的情况是上面的原始情况,即5^m=7^n+s,其中s<7。

然后机械师》(5 ^ m) = nx (7 ^ n) / (7 ^ n + s) = o (n + 1) = m (Log5 / Log7) + o(1)美国之前。

最坏的情况是我们只能找到k和s.t 5^m = kx7+s。

Then T7(5^m) = 1x(k.7)/(k.7+s) = 1+o(1)

其他情况介于两者之间。看看对于很大的m,我们能做得多好,也就是说,我们能多好地得到误差项,这将是很有趣的:

T7(5^m) = m (Log5/Log7)+e(m)

一般来说,似乎不可能实现e(m)=o(1)但希望我们可以证明e(m)=o(m)。

整个问题取决于5^m的7位数字对不同m值的分布。

我相信有很多理论涵盖了这一点,我可能会在某个时候看一看并报告。