给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

亚当·罗森菲尔德正确答案的前提是:

X = 5^n(在他的例子中,n=2) 操作n个rand5次调用以获得范围[1,x]内的数字y Z = ((int)(x / 7)) * 7 如果y > z,再试一次。否则返回y % 7 + 1

当n = 2时,有4种可能:y ={22,23,24,25}。如果你使用n = 6,你只有1个扔掉的东西:y ={15625}。

5^6 is 15625 7 times 2232 is 15624

你又给rand5个电话。但是,您获得一个丢弃值(或无限循环)的机会要低得多。如果有办法让y没有可能的一次性值,我还没有找到它。

其他回答

给定一个生成1到5rand5()范围内随机整数的函数,编写一个生成1到7rand7()范围内随机整数的函数

在我建议的解决方案中,我只调用rand5一次

真正的解决方案

float rand7()
{
    return (rand5() * 7.0) / 5.0 ;
}

这里的分布是缩放的,所以它直接取决于rand5的分布

整数解

int rand7()
{
    static int prev = 1;

    int cur = rand5();

    int r = cur * prev; // 1-25

    float f = r / 4.0; // 0.25-6.25

    f = f - 0.25; // 0-6

    f = f + 1.0; // 1-7

    prev = cur;

    return (int)f;
}

这里的分布取决于rand7(i) ~ rand5(i) * rand5(i-1)

rand7(0) ~ rand5(0) * 1

我想到了一个解决这个问题的有趣方法,想和大家分享一下。

function rand7() {

    var returnVal = 4;

    for (var n=0; n<3; n++) {
        var rand = rand5();

        if (rand==1||rand==2){
            returnVal+=1;
        }
        else if (rand==3||rand==4) {
            returnVal-=1;
        }
    }

    return returnVal;
}

我构建了一个测试函数,循环rand7() 10,000次,将所有返回值相加,然后除以10,000。如果rand7()工作正常,我们计算的平均值应该是4 -例如,(1+2+3+4+5+6+7 / 7)= 4。在做了多次测试后,平均值确实是4:)

下面是一个利用c++ 11特性的答案

#include <functional>
#include <iostream>
#include <ostream>
#include <random>

int main()
{
    std::random_device rd;
    unsigned long seed = rd();
    std::cout << "seed = " << seed << std::endl;

    std::mt19937 engine(seed);

    std::uniform_int_distribution<> dist(1, 5);
    auto rand5 = std::bind(dist, engine);

    const int n = 20;
    for (int i = 0; i != n; ++i)
    {
        std::cout << rand5() << " ";
    }
    std::cout << std::endl;

    // Use a lambda expression to define rand7
    auto rand7 = [&rand5]()->int
    {
        for (int result = 0; ; result = 0)
        {
            // Take advantage of the fact that
            // 5**6 = 15625 = 15624 + 1 = 7 * (2232) + 1.
            // So we only have to discard one out of every 15625 numbers generated.

            // Generate a 6-digit number in base 5
            for (int i = 0; i != 6; ++i)
            {
                result = 5 * result + (rand5() - 1);
            }

            // result is in the range [0, 15625)
            if (result == 15625 - 1)
            {
                // Discard this number
                continue;
            }

            // We now know that result is in the range [0, 15624), a range that can
            // be divided evenly into 7 buckets guaranteeing uniformity
            result /= 2232;
            return 1 + result;
        }
    };

    for (int i = 0; i != n; ++i)
    {
        std::cout << rand7() << " ";
    }
    std::cout << std::endl;

    return 0;
}
rand25() =5*(rand5()-1) + rand5()

rand7() { 
   while(true) {
       int r = rand25();
       if (r < 21) return r%3;         
   }
}

为什么这样做:循环永远运行的概率是0。

通过使用滚动总数,您可以同时

保持平均分配;而且 不需要牺牲随机序列中的任何元素。

这两个问题都是简单的rand(5)+rand(5)…类型的解决方案。下面的Python代码展示了如何实现它(其中大部分是证明发行版)。

import random
x = []
for i in range (0,7):
    x.append (0)
t = 0
tt = 0
for i in range (0,700000):
    ########################################
    #####            qq.py             #####
    r = int (random.random () * 5)
    t = (t + r) % 7
    ########################################
    #####       qq_notsogood.py        #####
    #r = 20
    #while r > 6:
        #r =     int (random.random () * 5)
        #r = r + int (random.random () * 5)
    #t = r
    ########################################
    x[t] = x[t] + 1
    tt = tt + 1
high = x[0]
low = x[0]
for i in range (0,7):
    print "%d: %7d %.5f" % (i, x[i], 100.0 * x[i] / tt)
    if x[i] < low:
        low = x[i]
    if x[i] > high:
        high = x[i]
diff = high - low
print "Variation = %d (%.5f%%)" % (diff, 100.0 * diff / tt)

这个输出显示了结果:

pax$ python qq.py
0:   99908 14.27257
1:  100029 14.28986
2:  100327 14.33243
3:  100395 14.34214
4:   99104 14.15771
5:   99829 14.26129
6:  100408 14.34400
Variation = 1304 (0.18629%)

pax$ python qq.py
0:   99547 14.22100
1:  100229 14.31843
2:  100078 14.29686
3:   99451 14.20729
4:  100284 14.32629
5:  100038 14.29114
6:  100373 14.33900
Variation = 922 (0.13171%)

pax$ python qq.py
0:  100481 14.35443
1:   99188 14.16971
2:  100284 14.32629
3:  100222 14.31743
4:   99960 14.28000
5:   99426 14.20371
6:  100439 14.34843
Variation = 1293 (0.18471%)

一个简单的rand(5)+rand(5),忽略那些返回大于6的情况,其典型变化为18%,是上面所示方法的100倍:

pax$ python qq_notsogood.py
0:   31756 4.53657
1:   63304 9.04343
2:   95507 13.64386
3:  127825 18.26071
4:  158851 22.69300
5:  127567 18.22386
6:   95190 13.59857
Variation = 127095 (18.15643%)

pax$ python qq_notsogood.py
0:   31792 4.54171
1:   63637 9.09100
2:   95641 13.66300
3:  127627 18.23243
4:  158751 22.67871
5:  126782 18.11171
6:   95770 13.68143
Variation = 126959 (18.13700%)

pax$ python qq_notsogood.py
0:   31955 4.56500
1:   63485 9.06929
2:   94849 13.54986
3:  127737 18.24814
4:  159687 22.81243
5:  127391 18.19871
6:   94896 13.55657
Variation = 127732 (18.24743%)

并且,根据Nixuz的建议,我已经清理了脚本,所以您可以提取并使用rand7…材料:

import random

# rand5() returns 0 through 4 inclusive.

def rand5():
    return int (random.random () * 5)

# rand7() generator returns 0 through 6 inclusive (using rand5()).

def rand7():
    rand7ret = 0
    while True:
        rand7ret = (rand7ret + rand5()) % 7
        yield rand7ret

# Number of test runs.

count = 700000

# Work out distribution.

distrib = [0,0,0,0,0,0,0]
rgen =rand7()
for i in range (0,count):
    r = rgen.next()
    distrib[r] = distrib[r] + 1

# Print distributions and calculate variation.

high = distrib[0]
low = distrib[0]
for i in range (0,7):
    print "%d: %7d %.5f" % (i, distrib[i], 100.0 * distrib[i] / count)
    if distrib[i] < low:
        low = distrib[i]
    if distrib[i] > high:
        high = distrib[i]
diff = high - low
print "Variation = %d (%.5f%%)" % (diff, 100.0 * diff / count)