给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。
当前回答
为什么不除以5再乘以7,然后四舍五入呢?(当然,你必须使用浮点数no.)
它比其他解决方案更简单、更可靠(真的吗?)例如,在Python中:
def ranndomNo7():
import random
rand5 = random.randint(4) # Produces range: [0, 4]
rand7 = int(rand5 / 5 * 7) # /5, *7, +0.5 and floor()
return rand7
这不是很容易吗?
其他回答
这里允许作业题吗?
这个函数进行粗略的“以5为基数”的数学运算,生成0到6之间的数字。
function rnd7() {
do {
r1 = rnd5() - 1;
do {
r2=rnd5() - 1;
} while (r2 > 1);
result = r2 * 5 + r1;
} while (result > 6);
return result + 1;
}
因为1/7是一个以5为底的无限小数,所以没有(完全正确的)解可以在常数时间内运行。一个简单的解决方案是使用拒绝抽样,例如:
int i;
do
{
i = 5 * (rand5() - 1) + rand5(); // i is now uniformly random between 1 and 25
} while(i > 21);
// i is now uniformly random between 1 and 21
return i % 7 + 1; // result is now uniformly random between 1 and 7
这个循环的预期运行时间为25/21 = 1.19次迭代,但是永远循环的概率非常小。
我玩了一下,我为这个Rand(7)算法写了“测试环境”。例如,如果你想尝试哪种分布给你的算法,或者需要多少次迭代才能生成所有不同的随机值(对于Rand(7) 1-7),你可以使用它。
我的核心算法是:
return (Rand5() + Rand5()) % 7 + 1;
和亚当·罗森菲尔德的分布一样均匀。(我将其包含在代码片段中)
private static int Rand7WithRand5()
{
//PUT YOU FAVOURITE ALGORITHM HERE//
//1. Stackoverflow winner
int i;
do
{
i = 5 * (Rand5() - 1) + Rand5(); // i is now uniformly random between 1 and 25
} while (i > 21);
// i is now uniformly random between 1 and 21
return i % 7 + 1;
//My 2 cents
//return (Rand5() + Rand5()) % 7 + 1;
}
这个“测试环境”可以采用任何Rand(n)算法并测试和评估它(分布和速度)。只需将代码放入“Rand7WithRand5”方法并运行代码片段。
一些观察:
亚当·罗森菲尔德(Adam Rosenfield)的算法并不比我的算法分布得更好。不管怎样,两种算法的分布都很糟糕。 本机Rand7(随机的。Next(1,8))完成,因为它在大约200+迭代中生成了给定间隔内的所有成员,Rand7WithRand5算法的顺序为10k(约30-70k) 真正的挑战不是编写从Rand(5)生成Rand(7)的方法,而是生成几乎均匀分布的值。
int ans = 0;
while (ans == 0)
{
for (int i=0; i<3; i++)
{
while ((r = rand5()) == 3){};
ans += (r < 3) >> i
}
}
这个答案更像是一个从Rand5函数中获得最大熵的实验。因此,T有点不清楚,几乎可以肯定比其他实现慢得多。
假设0-4为均匀分布,0-6为均匀分布:
public class SevenFromFive
{
public SevenFromFive()
{
// this outputs a uniform ditribution but for some reason including it
// screws up the output distribution
// open question Why?
this.fifth = new ProbabilityCondensor(5, b => {});
this.eigth = new ProbabilityCondensor(8, AddEntropy);
}
private static Random r = new Random();
private static uint Rand5()
{
return (uint)r.Next(0,5);
}
private class ProbabilityCondensor
{
private readonly int samples;
private int counter;
private int store;
private readonly Action<bool> output;
public ProbabilityCondensor(int chanceOfTrueReciprocal,
Action<bool> output)
{
this.output = output;
this.samples = chanceOfTrueReciprocal - 1;
}
public void Add(bool bit)
{
this.counter++;
if (bit)
this.store++;
if (counter == samples)
{
bool? e;
if (store == 0)
e = false;
else if (store == 1)
e = true;
else
e = null;// discard for now
counter = 0;
store = 0;
if (e.HasValue)
output(e.Value);
}
}
}
ulong buffer = 0;
const ulong Mask = 7UL;
int bitsAvail = 0;
private readonly ProbabilityCondensor fifth;
private readonly ProbabilityCondensor eigth;
private void AddEntropy(bool bit)
{
buffer <<= 1;
if (bit)
buffer |= 1;
bitsAvail++;
}
private void AddTwoBitsEntropy(uint u)
{
buffer <<= 2;
buffer |= (u & 3UL);
bitsAvail += 2;
}
public uint Rand7()
{
uint selection;
do
{
while (bitsAvail < 3)
{
var x = Rand5();
if (x < 4)
{
// put the two low order bits straight in
AddTwoBitsEntropy(x);
fifth.Add(false);
}
else
{
fifth.Add(true);
}
}
// read 3 bits
selection = (uint)((buffer & Mask));
bitsAvail -= 3;
buffer >>= 3;
if (selection == 7)
eigth.Add(true);
else
eigth.Add(false);
}
while (selection == 7);
return selection;
}
}
每次调用Rand5添加到缓冲区的比特数目前是4/5 * 2,所以是1.6。 如果包括1/5的概率值,则增加0.05,因此增加1.65,但请参阅代码中的注释,我不得不禁用它。
调用Rand7消耗的比特数= 3 + 1/8 *(3 + 1/8 *(3 + 1/8 *(… 这是3 + 3/8 + 3/64 + 3/512…大约是3.42
通过从7中提取信息,我每次调用回收1/8*1/7位,大约0.018
这使得每次调用的净消耗为3.4比特,这意味着每一次Rand7调用到Rand5的比率为2.125。最优值应该是2.1。
我可以想象这种方法比这里的许多其他方法都要慢得多,除非调用Rand5的代价非常昂贵(比如调用一些外部熵源)。