给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

给定一个生成1到5rand5()范围内随机整数的函数,编写一个生成1到7rand7()范围内随机整数的函数

在我建议的解决方案中,我只调用rand5一次

真正的解决方案

float rand7()
{
    return (rand5() * 7.0) / 5.0 ;
}

这里的分布是缩放的,所以它直接取决于rand5的分布

整数解

int rand7()
{
    static int prev = 1;

    int cur = rand5();

    int r = cur * prev; // 1-25

    float f = r / 4.0; // 0.25-6.25

    f = f - 0.25; // 0-6

    f = f + 1.0; // 1-7

    prev = cur;

    return (int)f;
}

这里的分布取决于rand7(i) ~ rand5(i) * rand5(i-1)

rand7(0) ~ rand5(0) * 1

其他回答

这里是我的一般实现,在给定一个范围为[0,B-1]的均匀发生器的情况下,生成范围为[0,N-1]的均匀。

public class RandomUnif {

    public static final int BASE_NUMBER = 5;

    private static Random rand = new Random();

    /** given generator, returns uniform integer in the range 0.. BASE_NUMBER-1
    public static int randomBASE() {
        return rand.nextInt(BASE_NUMBER);
    }

    /** returns uniform integer in the range 0..n-1 using randomBASE() */
    public static int randomUnif(int n) {
        int rand, factor;
        if( n <= 1 ) return 0;
        else if( n == BASE_NUMBER ) return randomBASE();
        if( n < BASE_NUMBER ) {
            factor = BASE_NUMBER / n;
            do
                rand = randomBASE() / factor;
            while(rand >= n);
            return rand;
        } else {
            factor = (n - 1) / BASE_NUMBER + 1;
            do {
                rand = factor * randomBASE() + randomUnif(factor);
            } while(rand >= n);
            return rand;
        }
    }
}

不是特别高效,但一般和紧凑。对基生成器的均值调用:

 n  calls
 2  1.250 
 3  1.644 
 4  1.252 
 5  1.000 
 6  3.763 
 7  3.185 
 8  2.821 
 9  2.495 
10  2.250 
11  3.646 
12  3.316 
13  3.060 
14  2.853 
15  2.650 
16  2.814 
17  2.644 
18  2.502 
19  2.361 
20  2.248 
21  2.382 
22  2.277 
23  2.175 
24  2.082 
25  2.000 
26  5.472 
27  5.280 
28  5.119 
29  4.899 

下面是Adam回答的Python实现。

import random

def rand5():
    return random.randint(1, 5)

def rand7():
    while True:
        r = 5 * (rand5() - 1) + rand5()
        #r is now uniformly random between 1 and 25
        if (r <= 21):
            break
    #result is now uniformly random between 1 and 7
    return r % 7 + 1

我喜欢把我正在研究的算法扔进Python,这样我就可以摆弄它们,我想我把它贴在这里,希望它对外面的人有用,而不是花很长时间来拼凑。

#!/usr/bin/env ruby
class Integer
  def rand7
    rand(6)+1
  end
end

def rand5
  rand(4)+1
end

x = rand5() # x => int between 1 and 5

y = x.rand7() # y => int between 1 and 7

..尽管这可能被认为是作弊。

package CareerCup;

public class RangeTransform {
 static int counter = (int)(Math.random() * 5 + 1);

 private int func() {
  return (int) (Math.random() * 5 + 1);
 }

 private int getMultiplier() {
  return counter % 5 + 1;
 }

 public int rangeTransform() {
  counter++;
  int count = getMultiplier();
  int mult = func() + 5 * count;
  System.out.println("Mult is : " + 5 * count);
  return (mult) % 7 + 1;
 }

 /**
  * @param args
  */
 public static void main(String[] args) {
  // TODO Auto-generated method stub
  RangeTransform rangeTransform = new RangeTransform();
  for (int i = 0; i < 35; i++)
   System.out.println("Val is : " + rangeTransform.rangeTransform());
 }
}

以下是我的回答:

static struct rand_buffer {
  unsigned v, count;
} buf2, buf3;

void push (struct rand_buffer *buf, unsigned n, unsigned v)
{
  buf->v = buf->v * n + v;
  ++buf->count;
}

#define PUSH(n, v)  push (&buf##n, n, v)

int rand16 (void)
{
  int v = buf2.v & 0xf;
  buf2.v >>= 4;
  buf2.count -= 4;
  return v;
}

int rand9 (void)
{
  int v = buf3.v % 9;
  buf3.v /= 9;
  buf3.count -= 2;
  return v;
}

int rand7 (void)
{
  if (buf3.count >= 2) {
    int v = rand9 ();

    if (v < 7)
      return v % 7 + 1;

    PUSH (2, v - 7);
  }

  for (;;) {
    if (buf2.count >= 4) {
      int v = rand16 ();

      if (v < 14) {
        PUSH (2, v / 7);
        return v % 7 + 1;
      }

      PUSH (2, v - 14);
    }

    // Get a number between 0 & 25
    int v = 5 * (rand5 () - 1) + rand5 () - 1;

    if (v < 21) {
      PUSH (3, v / 7);
      return v % 7 + 1;
    }

    v -= 21;
    PUSH (2, v & 1);
    PUSH (2, v >> 1);
  }
}

它比其他的稍微复杂一点,但我相信它最小化了对rand5的调用。与其他解决方案一样,它有小概率会循环很长时间。