给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。
当前回答
给定一个生成1到5rand5()范围内随机整数的函数,编写一个生成1到7rand7()范围内随机整数的函数
在我建议的解决方案中,我只调用rand5一次
真正的解决方案
float rand7()
{
return (rand5() * 7.0) / 5.0 ;
}
这里的分布是缩放的,所以它直接取决于rand5的分布
整数解
int rand7()
{
static int prev = 1;
int cur = rand5();
int r = cur * prev; // 1-25
float f = r / 4.0; // 0.25-6.25
f = f - 0.25; // 0-6
f = f + 1.0; // 1-7
prev = cur;
return (int)f;
}
这里的分布取决于rand7(i) ~ rand5(i) * rand5(i-1)
rand7(0) ~ rand5(0) * 1
其他回答
产生近似均匀分布的常数时间解。诀窍是625恰好能被7整除当你增加到这个范围时,你可以得到均匀的分布。
编辑:我的错,我算错了,但我不会把它拉下来,以防有人觉得它有用/有趣。毕竟它确实有效……:)
int rand5()
{
return (rand() % 5) + 1;
}
int rand25()
{
return (5 * (rand5() - 1) + rand5());
}
int rand625()
{
return (25 * (rand25() - 1) + rand25());
}
int rand7()
{
return ((625 * (rand625() - 1) + rand625()) - 1) % 7 + 1;
}
我不喜欢从1开始的范围,所以我将从0开始:-)
unsigned rand5()
{
return rand() % 5;
}
unsigned rand7()
{
int r;
do
{
r = rand5();
r = r * 5 + rand5();
r = r * 5 + rand5();
r = r * 5 + rand5();
r = r * 5 + rand5();
r = r * 5 + rand5();
} while (r > 15623);
return r / 2232;
}
这是我在看过别人的答案后得出的最简单的答案:
def r5tor7():
while True:
cand = (5 * r5()) + r5()
if cand < 27:
return cand
Cand在[6,27]范围内,如果r5()的可能结果是均匀分布的,则可能结果是均匀分布的。你可以用下面的代码来测试我的答案:
from collections import defaultdict
def r5_outcome(n):
if not n:
yield []
else:
for i in range(1, 6):
for j in r5_outcome(n-1):
yield [i] + j
def test_r7():
d = defaultdict(int)
for x in r5_outcome(2):
s = sum([x[i] * 5**i for i in range(len(x))])
if s < 27:
d[s] += 1
print len(d), d
R5_outcome(2)生成r5()结果的所有可能组合。我使用与解决方案代码中相同的筛选器进行测试。你可以看到所有的结果都是相等的,因为它们有相同的值。
只要没有剩下7种可能性,就再画一个随机数,将可能性数乘以5。在Perl中:
$num = 0;
$possibilities = 1;
sub rand7
{
while( $possibilities < 7 )
{
$num = $num * 5 + int(rand(5));
$possibilities *= 5;
}
my $result = $num % 7;
$num = int( $num / 7 );
$possibilities /= 7;
return $result;
}
int getOneToSeven(){
int added = 0;
for(int i = 1; i<=7; i++){
added += getOneToFive();
}
return (added)%7+1;
}