给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

给定一个生成1到5rand5()范围内随机整数的函数,编写一个生成1到7rand7()范围内随机整数的函数

在我建议的解决方案中,我只调用rand5一次

真正的解决方案

float rand7()
{
    return (rand5() * 7.0) / 5.0 ;
}

这里的分布是缩放的,所以它直接取决于rand5的分布

整数解

int rand7()
{
    static int prev = 1;

    int cur = rand5();

    int r = cur * prev; // 1-25

    float f = r / 4.0; // 0.25-6.25

    f = f - 0.25; // 0-6

    f = f + 1.0; // 1-7

    prev = cur;

    return (int)f;
}

这里的分布取决于rand7(i) ~ rand5(i) * rand5(i-1)

rand7(0) ~ rand5(0) * 1

其他回答

对于范围[1,5]到[1,7],这相当于用一个5面骰子滚动一个7面骰子。

然而,如果不“浪费”随机性(或者在最坏的情况下永远运行),就无法做到这一点,因为7的所有质因数(即7)都不能整除5。因此,最好的方法是使用拒绝抽样来获得任意接近于不“浪费”随机性的结果(例如,将多个5面骰子摇到5^n“足够接近”7的幂)。这个问题的解决方案已经在其他答案中给出了。

更一般地说,用p面骰子掷k面骰子的算法将不可避免地“浪费”随机性(并且在最坏的情况下永远运行),除非“每个质数能除k也能除p”,根据B. Kloeckner的“用骰子模拟骰子”中的引理3。例如,举一个更实际的例子,p是2的幂,k是任意的。在这种情况下,这种“浪费”和无限的运行时间是不可避免的,除非k也是2的幂。

给定一个生成1到5rand5()范围内随机整数的函数,编写一个生成1到7rand7()范围内随机整数的函数

在我建议的解决方案中,我只调用rand5一次

真正的解决方案

float rand7()
{
    return (rand5() * 7.0) / 5.0 ;
}

这里的分布是缩放的,所以它直接取决于rand5的分布

整数解

int rand7()
{
    static int prev = 1;

    int cur = rand5();

    int r = cur * prev; // 1-25

    float f = r / 4.0; // 0.25-6.25

    f = f - 0.25; // 0-6

    f = f + 1.0; // 1-7

    prev = cur;

    return (int)f;
}

这里的分布取决于rand7(i) ~ rand5(i) * rand5(i-1)

rand7(0) ~ rand5(0) * 1

面对这么复杂的答案,我觉得自己很蠢。

为什么不能:

int random1_to_7()
{
  return (random1_to_5() * 7) / 5;  
}

?

int rand7()
{
    return ( rand5() + (rand5()%3) );
}

rand5() -返回1-5之间的值 rand5()%3 -返回0-2之间的值 所以,当加起来时,总价值将在1-7之间

这个怎么样

rand5 () % + rand5 (2) + 2 (2) % + rand5 rand5 () (2) % + rand5 % + rand5 (2) 2

不确定这是均匀分布的。有什么建议吗?