代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
当前回答
在我看来,“最好”的解决方案是另一个程序员(或者两年后的原始程序员)可以阅读而不需要大量注释的解决方案。你可能想要最快或最聪明的解决方案,有些人已经提供了,但我更喜欢可读性而不是聪明。
unsigned int bitCount (unsigned int value) {
unsigned int count = 0;
while (value > 0) { // until all bits are zero
if ((value & 1) == 1) // check lower bit
count++;
value >>= 1; // shift bits, removing lower bit
}
return count;
}
如果你想要更快的速度(并且假设你很好地记录了它,以帮助你的继任者),你可以使用表格查找:
// Lookup table for fast calculation of bits set in 8-bit unsigned char.
static unsigned char oneBitsInUChar[] = {
// 0 1 2 3 4 5 6 7 8 9 A B C D E F (<- n)
// =====================================================
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, // 0n
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, // 1n
: : :
4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, // Fn
};
// Function for fast calculation of bits set in 16-bit unsigned short.
unsigned char oneBitsInUShort (unsigned short x) {
return oneBitsInUChar [x >> 8]
+ oneBitsInUChar [x & 0xff];
}
// Function for fast calculation of bits set in 32-bit unsigned int.
unsigned char oneBitsInUInt (unsigned int x) {
return oneBitsInUShort (x >> 16)
+ oneBitsInUShort (x & 0xffff);
}
这些依赖于特定的数据类型大小,所以它们不是那么可移植的。但是,由于许多性能优化是不可移植的,这可能不是一个问题。如果您想要可移植性,我会坚持使用可读的解决方案。
其他回答
另一个汉明权重算法,如果你使用的是BMI2 CPU:
the_weight = __tzcnt_u64(~_pext_u64(data[i], data[i]));
如果您恰好使用Java,则内置方法Integer。bitCount会这样做。
我认为最快的方法——不使用查找表和popcount——是以下方法。它仅通过12次操作来计数设置位。
int popcount(int v) {
v = v - ((v >> 1) & 0x55555555); // put count of each 2 bits into those 2 bits
v = (v & 0x33333333) + ((v >> 2) & 0x33333333); // put count of each 4 bits into those 4 bits
return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
}
它之所以有效,是因为你可以通过将设置位分为两半来计算总设置位的数量,计算两半设置位的数量,然后将它们相加。也被称为分而治之范式。让我们来详细谈谈。
v = v - ((v >> 1) & 0x55555555);
两位位数可以是0b00、0b01或0b10。让我们试着在2位上解决这个问题。
---------------------------------------------
| v | (v >> 1) & 0b0101 | v - x |
---------------------------------------------
0b00 0b00 0b00
0b01 0b00 0b01
0b10 0b01 0b01
0b11 0b01 0b10
这就是所需要的:最后一列显示每两个位对中设置位的计数。如果两个比特数>= 2 (0b10),则产生0b01,否则产生0b00。
v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
这句话应该很容易理解。在第一个操作之后,我们每两个比特中就有一个set位的计数,现在我们每4个比特中就有一个set位的计数。
v & 0b00110011 //masks out even two bits
(v >> 2) & 0b00110011 // masks out odd two bits
然后我们把上面的结果加起来,得到4位的集合位总数。最后一个陈述是最棘手的。
c = ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
让我们进一步分析一下……
v + (v >> 4)
这和第二种说法很相似;我们以4为一组来计数集合位。因为我们之前的运算,我们知道每一个咬痕都有一个集合位的计数。让我们看一个例子。假设我们有字节0b01000010。这意味着第一个啃食有它的4位设置,第二个有它的2位设置。现在我们把这些小块加在一起。
v = 0b01000010
(v >> 4) = 0b00000100
v + (v >> 4) = 0b01000010 + 0b00000100
它为我们提供了一个字节中set位的计数,在第二个nibble 0b01000110中,因此我们掩码了该数字中所有字节的前四个字节(丢弃它们)。
0b01000110 & 0x0F = 0b00000110
现在每个字节都有一个集合位的计数。我们需要把它们全部加起来。诀窍是将结果乘以0b10101010,它有一个有趣的属性。如果我们的数字有四个字节,A B C D,它将产生一个新的数字,包含这些字节A+B+C+D B+C+D C+D。一个4字节的数字最多可以设置32位,可以表示为0b00100000。
我们现在需要的是第一个字节,它是所有字节中所有set位的和,我们通过>> 24得到它。该算法是为32位字设计的,但可以很容易地修改为64位字。
你可以这样做:
int countSetBits(int n)
{
n=((n&0xAAAAAAAA)>>1) + (n&0x55555555);
n=((n&0xCCCCCCCC)>>2) + (n&0x33333333);
n=((n&0xF0F0F0F0)>>4) + (n&0x0F0F0F0F);
n=((n&0xFF00FF00)>>8) + (n&0x00FF00FF);
return n;
}
int main()
{
int n=10;
printf("Number of set bits: %d",countSetBits(n));
return 0;
}
海王: http://ideone.com/JhwcX
工作原理如下:
首先,所有的偶数位都向右移动,并与奇数位相加,以计算两组位的数量。 然后我们两人一组,然后四个人,以此类推。
32位还是32位?我只是在阅读了“破解编码面试”第4版练习5.5(第5章:位操作)后,在Java中使用了这种方法。如果最小有效位是1个增量计数,则右移该整数。
public static int bitCount( int n){
int count = 0;
for (int i=n; i!=0; i = i >> 1){
count += i & 1;
}
return count;
}
我认为这个比常数0x33333333的解更直观,不管它们有多快。这取决于你对“最佳算法”的定义。