代表数字7的8位像这样:

00000111

设置了三个比特。

确定32位整数中设置位数的算法是什么?


当前回答

在我看来,“最好”的解决方案是另一个程序员(或者两年后的原始程序员)可以阅读而不需要大量注释的解决方案。你可能想要最快或最聪明的解决方案,有些人已经提供了,但我更喜欢可读性而不是聪明。

unsigned int bitCount (unsigned int value) {
    unsigned int count = 0;
    while (value > 0) {           // until all bits are zero
        if ((value & 1) == 1)     // check lower bit
            count++;
        value >>= 1;              // shift bits, removing lower bit
    }
    return count;
}

如果你想要更快的速度(并且假设你很好地记录了它,以帮助你的继任者),你可以使用表格查找:

// Lookup table for fast calculation of bits set in 8-bit unsigned char.

static unsigned char oneBitsInUChar[] = {
//  0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F (<- n)
//  =====================================================
    0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, // 0n
    1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, // 1n
    : : :
    4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, // Fn
};

// Function for fast calculation of bits set in 16-bit unsigned short.

unsigned char oneBitsInUShort (unsigned short x) {
    return oneBitsInUChar [x >>    8]
         + oneBitsInUChar [x &  0xff];
}

// Function for fast calculation of bits set in 32-bit unsigned int.

unsigned char oneBitsInUInt (unsigned int x) {
    return oneBitsInUShort (x >>     16)
         + oneBitsInUShort (x &  0xffff);
}

这些依赖于特定的数据类型大小,所以它们不是那么可移植的。但是,由于许多性能优化是不可移植的,这可能不是一个问题。如果您想要可移植性,我会坚持使用可读的解决方案。

其他回答

在我看来,“最好”的解决方案是另一个程序员(或者两年后的原始程序员)可以阅读而不需要大量注释的解决方案。你可能想要最快或最聪明的解决方案,有些人已经提供了,但我更喜欢可读性而不是聪明。

unsigned int bitCount (unsigned int value) {
    unsigned int count = 0;
    while (value > 0) {           // until all bits are zero
        if ((value & 1) == 1)     // check lower bit
            count++;
        value >>= 1;              // shift bits, removing lower bit
    }
    return count;
}

如果你想要更快的速度(并且假设你很好地记录了它,以帮助你的继任者),你可以使用表格查找:

// Lookup table for fast calculation of bits set in 8-bit unsigned char.

static unsigned char oneBitsInUChar[] = {
//  0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F (<- n)
//  =====================================================
    0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, // 0n
    1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, // 1n
    : : :
    4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, // Fn
};

// Function for fast calculation of bits set in 16-bit unsigned short.

unsigned char oneBitsInUShort (unsigned short x) {
    return oneBitsInUChar [x >>    8]
         + oneBitsInUChar [x &  0xff];
}

// Function for fast calculation of bits set in 32-bit unsigned int.

unsigned char oneBitsInUInt (unsigned int x) {
    return oneBitsInUShort (x >>     16)
         + oneBitsInUShort (x &  0xffff);
}

这些依赖于特定的数据类型大小,所以它们不是那么可移植的。但是,由于许多性能优化是不可移植的,这可能不是一个问题。如果您想要可移植性,我会坚持使用可读的解决方案。

对于232查找表和逐个遍历每个位之间的折中方法:

int bitcount(unsigned int num){
    int count = 0;
    static int nibblebits[] =
        {0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
    for(; num != 0; num >>= 4)
        count += nibblebits[num & 0x0f];
    return count;
}

从http://ctips.pbwiki.com/CountBits

摘自《黑客的喜悦》第66页,图5-2

int pop(unsigned x)
{
    x = x - ((x >> 1) & 0x55555555);
    x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
    x = (x + (x >> 4)) & 0x0F0F0F0F;
    x = x + (x >> 8);
    x = x + (x >> 16);
    return x & 0x0000003F;
}

执行大约20条指令(依赖于arch),没有分支。黑客的喜悦是令人愉快的!强烈推荐。

为什么不迭代地除以2呢?

count = 0
while n > 0
  if (n % 2) == 1
    count += 1
  n /= 2  

我同意这不是最快的,但是“最好”这个词有点含糊不清。我认为“最好”应该有一个清晰的元素

"最佳算法"是什么意思?短码还是长码?您的代码看起来非常优雅,并且具有恒定的执行时间。代码也很短。

但如果速度是主要因素,而不是代码大小,那么我认为以下方法可以更快:

       static final int[] BIT_COUNT = { 0, 1, 1, ... 256 values with a bitsize of a byte ... };
        static int bitCountOfByte( int value ){
            return BIT_COUNT[ value & 0xFF ];
        }

        static int bitCountOfInt( int value ){
            return bitCountOfByte( value ) 
                 + bitCountOfByte( value >> 8 ) 
                 + bitCountOfByte( value >> 16 ) 
                 + bitCountOfByte( value >> 24 );
        }

我认为这不会更快的64位值,但32位值可以更快。