代表数字7的8位像这样:

00000111

设置了三个比特。

确定32位整数中设置位数的算法是什么?


当前回答

你可以这样做:

int countSetBits(int n)
{
    n=((n&0xAAAAAAAA)>>1) + (n&0x55555555);
    n=((n&0xCCCCCCCC)>>2) + (n&0x33333333);
    n=((n&0xF0F0F0F0)>>4) + (n&0x0F0F0F0F);
    n=((n&0xFF00FF00)>>8) + (n&0x00FF00FF);
    return n;
}

int main()
{
    int n=10;
    printf("Number of set bits: %d",countSetBits(n));
     return 0;
}

海王: http://ideone.com/JhwcX

工作原理如下:

首先,所有的偶数位都向右移动,并与奇数位相加,以计算两组位的数量。 然后我们两人一组,然后四个人,以此类推。

其他回答

我个人使用这个:

  public static int myBitCount(long L){
      int count = 0;
      while (L != 0) {
         count++;
         L ^= L & -L; 
      }
      return count;
  }

你可以这样做:

int countSetBits(int n)
{
    n=((n&0xAAAAAAAA)>>1) + (n&0x55555555);
    n=((n&0xCCCCCCCC)>>2) + (n&0x33333333);
    n=((n&0xF0F0F0F0)>>4) + (n&0x0F0F0F0F);
    n=((n&0xFF00FF00)>>8) + (n&0x00FF00FF);
    return n;
}

int main()
{
    int n=10;
    printf("Number of set bits: %d",countSetBits(n));
     return 0;
}

海王: http://ideone.com/JhwcX

工作原理如下:

首先,所有的偶数位都向右移动,并与奇数位相加,以计算两组位的数量。 然后我们两人一组,然后四个人,以此类推。

// How about the following:
public int CountBits(int value)
{
    int count = 0;
    while (value > 0)
    {
        if (value & 1)
            count++;
        value <<= 1;
    }
    return count;
}

另一个汉明权重算法,如果你使用的是BMI2 CPU:

the_weight = __tzcnt_u64(~_pext_u64(data[i], data[i]));

大约在1990年,我为RISC机器编写了一个快速比特计数宏。它不使用高级算术(乘法,除法,%),内存提取(太慢),分支(太慢),但它确实假设CPU有一个32位的桶移位器(换句话说,>> 1和>> 32占用相同的周期)。它假定小常数(如6、12、24)加载到寄存器中不需要花费任何代价,或者存储在临时变量中并反复重用。

在这些假设下,在大多数RISC机器上,它在大约16个周期/指令中计算32位。注意,15条指令/周期接近于周期或指令数量的下界,因为似乎至少需要3条指令(掩码、移位、运算符)才能将加数的数量减半,因此log_2(32) = 5,5 x 3 = 15条指令是准下界。

#define BitCount(X,Y)           \
                Y = X - ((X >> 1) & 033333333333) - ((X >> 2) & 011111111111); \
                Y = ((Y + (Y >> 3)) & 030707070707); \
                Y =  (Y + (Y >> 6)); \
                Y = (Y + (Y >> 12) + (Y >> 24)) & 077;

这是第一步也是最复杂的一步:

input output
AB    CD             Note
00    00             = AB
01    01             = AB
10    01             = AB - (A >> 1) & 0x1
11    10             = AB - (A >> 1) & 0x1

所以如果我取上面的第一列(A),右移1位,然后从AB减去它,我就得到了输出(CD)。扩展到3位类似;如果你愿意,你可以用一个8行布尔表来检查它。

不吉利