代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
当前回答
你可以这样做:
int countSetBits(int n)
{
n=((n&0xAAAAAAAA)>>1) + (n&0x55555555);
n=((n&0xCCCCCCCC)>>2) + (n&0x33333333);
n=((n&0xF0F0F0F0)>>4) + (n&0x0F0F0F0F);
n=((n&0xFF00FF00)>>8) + (n&0x00FF00FF);
return n;
}
int main()
{
int n=10;
printf("Number of set bits: %d",countSetBits(n));
return 0;
}
海王: http://ideone.com/JhwcX
工作原理如下:
首先,所有的偶数位都向右移动,并与奇数位相加,以计算两组位的数量。 然后我们两人一组,然后四个人,以此类推。
其他回答
当你写出比特模式时,“黑客的喜悦”比特旋转变得更加清晰。
unsigned int bitCount(unsigned int x)
{
x = ((x >> 1) & 0b01010101010101010101010101010101)
+ (x & 0b01010101010101010101010101010101);
x = ((x >> 2) & 0b00110011001100110011001100110011)
+ (x & 0b00110011001100110011001100110011);
x = ((x >> 4) & 0b00001111000011110000111100001111)
+ (x & 0b00001111000011110000111100001111);
x = ((x >> 8) & 0b00000000111111110000000011111111)
+ (x & 0b00000000111111110000000011111111);
x = ((x >> 16)& 0b00000000000000001111111111111111)
+ (x & 0b00000000000000001111111111111111);
return x;
}
第一步将偶数位加到奇数位上,产生每两个位的和。其他步骤将高阶数据块添加到低阶数据块,将数据块的大小一直增加一倍,直到最终计数占用整个int。
在Java 8或9中只调用Integer。bitCount。
在我看来,“最好”的解决方案是另一个程序员(或者两年后的原始程序员)可以阅读而不需要大量注释的解决方案。你可能想要最快或最聪明的解决方案,有些人已经提供了,但我更喜欢可读性而不是聪明。
unsigned int bitCount (unsigned int value) {
unsigned int count = 0;
while (value > 0) { // until all bits are zero
if ((value & 1) == 1) // check lower bit
count++;
value >>= 1; // shift bits, removing lower bit
}
return count;
}
如果你想要更快的速度(并且假设你很好地记录了它,以帮助你的继任者),你可以使用表格查找:
// Lookup table for fast calculation of bits set in 8-bit unsigned char.
static unsigned char oneBitsInUChar[] = {
// 0 1 2 3 4 5 6 7 8 9 A B C D E F (<- n)
// =====================================================
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, // 0n
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, // 1n
: : :
4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, // Fn
};
// Function for fast calculation of bits set in 16-bit unsigned short.
unsigned char oneBitsInUShort (unsigned short x) {
return oneBitsInUChar [x >> 8]
+ oneBitsInUChar [x & 0xff];
}
// Function for fast calculation of bits set in 32-bit unsigned int.
unsigned char oneBitsInUInt (unsigned int x) {
return oneBitsInUShort (x >> 16)
+ oneBitsInUShort (x & 0xffff);
}
这些依赖于特定的数据类型大小,所以它们不是那么可移植的。但是,由于许多性能优化是不可移植的,这可能不是一个问题。如果您想要可移植性,我会坚持使用可读的解决方案。
对于那些想要在c++ 11中为任何无符号整数类型作为consexpr函数的人(tacklelib/include/tacklelib/utility/math.hpp):
#include <stdint.h>
#include <limits>
#include <type_traits>
const constexpr uint32_t uint32_max = (std::numeric_limits<uint32_t>::max)();
namespace detail
{
template <typename T>
inline constexpr T _count_bits_0(const T & v)
{
return v - ((v >> 1) & 0x55555555);
}
template <typename T>
inline constexpr T _count_bits_1(const T & v)
{
return (v & 0x33333333) + ((v >> 2) & 0x33333333);
}
template <typename T>
inline constexpr T _count_bits_2(const T & v)
{
return (v + (v >> 4)) & 0x0F0F0F0F;
}
template <typename T>
inline constexpr T _count_bits_3(const T & v)
{
return v + (v >> 8);
}
template <typename T>
inline constexpr T _count_bits_4(const T & v)
{
return v + (v >> 16);
}
template <typename T>
inline constexpr T _count_bits_5(const T & v)
{
return v & 0x0000003F;
}
template <typename T, bool greater_than_uint32>
struct _impl
{
static inline constexpr T _count_bits_with_shift(const T & v)
{
return
detail::_count_bits_5(
detail::_count_bits_4(
detail::_count_bits_3(
detail::_count_bits_2(
detail::_count_bits_1(
detail::_count_bits_0(v)))))) + count_bits(v >> 32);
}
};
template <typename T>
struct _impl<T, false>
{
static inline constexpr T _count_bits_with_shift(const T & v)
{
return 0;
}
};
}
template <typename T>
inline constexpr T count_bits(const T & v)
{
static_assert(std::is_integral<T>::value, "type T must be an integer");
static_assert(!std::is_signed<T>::value, "type T must be not signed");
return uint32_max >= v ?
detail::_count_bits_5(
detail::_count_bits_4(
detail::_count_bits_3(
detail::_count_bits_2(
detail::_count_bits_1(
detail::_count_bits_0(v)))))) :
detail::_impl<T, sizeof(uint32_t) < sizeof(v)>::_count_bits_with_shift(v);
}
谷歌测试库中的附加测试:
#include <stdlib.h>
#include <time.h>
namespace {
template <typename T>
inline uint32_t _test_count_bits(const T & v)
{
uint32_t count = 0;
T n = v;
while (n > 0) {
if (n % 2) {
count += 1;
}
n /= 2;
}
return count;
}
}
TEST(FunctionsTest, random_count_bits_uint32_100K)
{
srand(uint_t(time(NULL)));
for (uint32_t i = 0; i < 100000; i++) {
const uint32_t r = uint32_t(rand()) + (uint32_t(rand()) << 16);
ASSERT_EQ(_test_count_bits(r), count_bits(r));
}
}
TEST(FunctionsTest, random_count_bits_uint64_100K)
{
srand(uint_t(time(NULL)));
for (uint32_t i = 0; i < 100000; i++) {
const uint64_t r = uint64_t(rand()) + (uint64_t(rand()) << 16) + (uint64_t(rand()) << 32) + (uint64_t(rand()) << 48);
ASSERT_EQ(_test_count_bits(r), count_bits(r));
}
}
def hammingWeight(n):
count = 0
while n:
if n&1:
count += 1
n >>= 1
return count