代表数字7的8位像这样:

00000111

设置了三个比特。

确定32位整数中设置位数的算法是什么?


当前回答

32位还是32位?我只是在阅读了“破解编码面试”第4版练习5.5(第5章:位操作)后,在Java中使用了这种方法。如果最小有效位是1个增量计数,则右移该整数。

public static int bitCount( int n){
    int count = 0;
    for (int i=n; i!=0; i = i >> 1){
        count += i & 1;
    }
    return count;
}

我认为这个比常数0x33333333的解更直观,不管它们有多快。这取决于你对“最佳算法”的定义。

其他回答

你可以使用内置函数__builtin_popcount()。c++中没有__builtin_popcount,但它是GCC编译器的内置函数。这个函数返回一个整数中的设置位数。

int __builtin_popcount (unsigned int x);

参考:Bit Twiddling Hacks

这可以在O(k)中完成,其中k是设置的比特数。

int NumberOfSetBits(int n)
{
    int count = 0;

    while (n){
        ++ count;
        n = (n - 1) & n;
    }

    return count;
}

以二进制表示计数集位(N):

伪代码,

设置counter = 0。 重复计数,直到N不为零。 检查最后一点。 如果最后一位= 1,则递增计数器 丢弃N的最后一位。

现在让我们用c++编写代码

int countSetBits(unsigned int n){

int count = 0;

while(n!=0){

    count += n&1;

    n = n >>1;
}

  return count;

}

我们用这个函数。

int main(){

 int x = 5;
 cout<<countSetBits(x);

 return 0;
}

输出:2

因为5有2位二进制表示(101)。

您可以在这里运行代码。

Python的解决方案:

def hammingWeight(n: int) -> int:
    sums = 0
    while (n!=0):
        sums+=1
        n = n &(n-1)

    return sums

在二进制表示中,n中最不有效的1位总是对应n - 1中的0位。因此,对n和n - 1这两个数进行and运算总是将n中最不有效的1位翻转为0,并保持所有其他位相同。

从Python 3.10开始,你将能够使用int.bit_count()函数,但目前,你可以自己定义这个函数。

def bit_count(integer):
    return bin(integer).count("1")