代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
当前回答
32位还是32位?我只是在阅读了“破解编码面试”第4版练习5.5(第5章:位操作)后,在Java中使用了这种方法。如果最小有效位是1个增量计数,则右移该整数。
public static int bitCount( int n){
int count = 0;
for (int i=n; i!=0; i = i >> 1){
count += i & 1;
}
return count;
}
我认为这个比常数0x33333333的解更直观,不管它们有多快。这取决于你对“最佳算法”的定义。
其他回答
对于那些想要在c++ 11中为任何无符号整数类型作为consexpr函数的人(tacklelib/include/tacklelib/utility/math.hpp):
#include <stdint.h>
#include <limits>
#include <type_traits>
const constexpr uint32_t uint32_max = (std::numeric_limits<uint32_t>::max)();
namespace detail
{
template <typename T>
inline constexpr T _count_bits_0(const T & v)
{
return v - ((v >> 1) & 0x55555555);
}
template <typename T>
inline constexpr T _count_bits_1(const T & v)
{
return (v & 0x33333333) + ((v >> 2) & 0x33333333);
}
template <typename T>
inline constexpr T _count_bits_2(const T & v)
{
return (v + (v >> 4)) & 0x0F0F0F0F;
}
template <typename T>
inline constexpr T _count_bits_3(const T & v)
{
return v + (v >> 8);
}
template <typename T>
inline constexpr T _count_bits_4(const T & v)
{
return v + (v >> 16);
}
template <typename T>
inline constexpr T _count_bits_5(const T & v)
{
return v & 0x0000003F;
}
template <typename T, bool greater_than_uint32>
struct _impl
{
static inline constexpr T _count_bits_with_shift(const T & v)
{
return
detail::_count_bits_5(
detail::_count_bits_4(
detail::_count_bits_3(
detail::_count_bits_2(
detail::_count_bits_1(
detail::_count_bits_0(v)))))) + count_bits(v >> 32);
}
};
template <typename T>
struct _impl<T, false>
{
static inline constexpr T _count_bits_with_shift(const T & v)
{
return 0;
}
};
}
template <typename T>
inline constexpr T count_bits(const T & v)
{
static_assert(std::is_integral<T>::value, "type T must be an integer");
static_assert(!std::is_signed<T>::value, "type T must be not signed");
return uint32_max >= v ?
detail::_count_bits_5(
detail::_count_bits_4(
detail::_count_bits_3(
detail::_count_bits_2(
detail::_count_bits_1(
detail::_count_bits_0(v)))))) :
detail::_impl<T, sizeof(uint32_t) < sizeof(v)>::_count_bits_with_shift(v);
}
谷歌测试库中的附加测试:
#include <stdlib.h>
#include <time.h>
namespace {
template <typename T>
inline uint32_t _test_count_bits(const T & v)
{
uint32_t count = 0;
T n = v;
while (n > 0) {
if (n % 2) {
count += 1;
}
n /= 2;
}
return count;
}
}
TEST(FunctionsTest, random_count_bits_uint32_100K)
{
srand(uint_t(time(NULL)));
for (uint32_t i = 0; i < 100000; i++) {
const uint32_t r = uint32_t(rand()) + (uint32_t(rand()) << 16);
ASSERT_EQ(_test_count_bits(r), count_bits(r));
}
}
TEST(FunctionsTest, random_count_bits_uint64_100K)
{
srand(uint_t(time(NULL)));
for (uint32_t i = 0; i < 100000; i++) {
const uint64_t r = uint64_t(rand()) + (uint64_t(rand()) << 16) + (uint64_t(rand()) << 32) + (uint64_t(rand()) << 48);
ASSERT_EQ(_test_count_bits(r), count_bits(r));
}
}
我觉得很无聊,于是对三种方法进行了十亿次迭代。编译器是gcc -O3。CPU就是第一代Macbook Pro里装的东西。
最快的是3.7秒:
static unsigned char wordbits[65536] = { bitcounts of ints between 0 and 65535 };
static int popcount( unsigned int i )
{
return( wordbits[i&0xFFFF] + wordbits[i>>16] );
}
第二名是相同的代码,但查找的是4个字节而不是2个半字。这花了大约5.5秒。
第三名是“横向加法”法,用时8.6秒。
第四名是GCC的__builtin_popcount(),仅为11秒。
一次一个比特的计数方法要慢得多,我厌倦了等待它完成。
因此,如果您最关心的是性能,那么请使用第一种方法。如果您关心它,但又不想在上面花费64Kb的RAM,那么可以使用第二种方法。否则,请使用可读的(但速度较慢)一次一位的方法。
很难想象在什么情况下你会想要使用比特旋转方法。
编辑:这里也有类似的结果。
我给出了两个算法来回答这个问题,
package countSetBitsInAnInteger;
import java.util.Scanner;
public class UsingLoop {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
try {
System.out.println("Enter a integer number to check for set bits in it");
int n = in.nextInt();
System.out.println("Using while loop, we get the number of set bits as: " + usingLoop(n));
System.out.println("Using Brain Kernighan's Algorithm, we get the number of set bits as: " + usingBrainKernighan(n));
System.out.println("Using ");
}
finally {
in.close();
}
}
private static int usingBrainKernighan(int n) {
int count = 0;
while(n > 0) {
n& = (n-1);
count++;
}
return count;
}
/*
Analysis:
Time complexity = O(lgn)
Space complexity = O(1)
*/
private static int usingLoop(int n) {
int count = 0;
for(int i=0; i<32; i++) {
if((n&(1 << i)) != 0)
count++;
}
return count;
}
/*
Analysis:
Time Complexity = O(32) // Maybe the complexity is O(lgn)
Space Complexity = O(1)
*/
}
Kotlin 1.4 之前
fun NumberOfSetBits(i: Int): Int {
var i = i
i -= (i ushr 1 and 0x55555555)
i = (i and 0x33333333) + (i ushr 2 and 0x33333333)
return (i + (i ushr 4) and 0x0F0F0F0F) * 0x01010101 ushr 24
}
这或多或少是上面那个答案的翻版。
它带有Java补丁,然后使用IntelliJ IDEA Community Edition中的转换器进行转换
1.4及以上(截至2021-05-05 -未来可能会改变)。
fun NumberOfSetBits(i: Int): Int {
return i.countOneBits()
}
在底层,它使用Integer。bitCount如下所示:
@SinceKotlin("1.4")
@WasExperimental(ExperimentalStdlibApi::class)
@kotlin.internal.InlineOnly
public actual inline fun Int.countOneBits(): Int = Integer.bitCount(this)
将整数转换为二进制字符串并计数。
PHP解决方案:
substr_count(decbin($integer), '1');