代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
当前回答
#!/user/local/bin/perl
$c=0x11BBBBAB;
$count=0;
$m=0x00000001;
for($i=0;$i<32;$i++)
{
$f=$c & $m;
if($f == 1)
{
$count++;
}
$c=$c >> 1;
}
printf("%d",$count);
ive done it through a perl script. the number taken is $c=0x11BBBBAB
B=3 1s
A=2 1s
so in total
1+1+3+3+3+2+3+3=19
其他回答
几个悬而未决的问题:-
如果这个数是负的呢? 如果这个数字是1024,那么“迭代除以2”方法将迭代10次。
我们可以修改算法以支持负数:-
count = 0
while n != 0
if ((n % 2) == 1 || (n % 2) == -1
count += 1
n /= 2
return count
现在为了克服第二个问题,我们可以编写这样的算法:-
int bit_count(int num)
{
int count=0;
while(num)
{
num=(num)&(num-1);
count++;
}
return count;
}
完整参考请参见:
http://goursaha.freeoda.com/Miscellaneous/IntegerBitCount.html
摘自《黑客的喜悦》第66页,图5-2
int pop(unsigned x)
{
x = x - ((x >> 1) & 0x55555555);
x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
x = (x + (x >> 4)) & 0x0F0F0F0F;
x = x + (x >> 8);
x = x + (x >> 16);
return x & 0x0000003F;
}
执行大约20条指令(依赖于arch),没有分支。黑客的喜悦是令人愉快的!强烈推荐。
我使用下面的函数。我还没有检查基准测试,但它是有效的。
int msb(int num)
{
int m = 0;
for (int i = 16; i > 0; i = i>>1)
{
// debug(i, num, m);
if(num>>i)
{
m += i;
num>>=i;
}
}
return m;
}
对于Java,有一个Java .util. bitset。 https://docs.oracle.com/javase/8/docs/api/java/util/BitSet.html
cardinality():返回在BitSet中设置为true的比特数。
BitSet是内存高效的,因为它被存储为Long类型。
将整数转换为二进制字符串并计数。
PHP解决方案:
substr_count(decbin($integer), '1');