代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
当前回答
对于232查找表和逐个遍历每个位之间的折中方法:
int bitcount(unsigned int num){
int count = 0;
static int nibblebits[] =
{0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
for(; num != 0; num >>= 4)
count += nibblebits[num & 0x0f];
return count;
}
从http://ctips.pbwiki.com/CountBits
其他回答
unsigned int count_bit(unsigned int x)
{
x = (x & 0x55555555) + ((x >> 1) & 0x55555555);
x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
x = (x & 0x0F0F0F0F) + ((x >> 4) & 0x0F0F0F0F);
x = (x & 0x00FF00FF) + ((x >> 8) & 0x00FF00FF);
x = (x & 0x0000FFFF) + ((x >> 16)& 0x0000FFFF);
return x;
}
我来解释一下这个算法。
该算法基于分治算法。假设有一个8位整数213(二进制的11010101),算法是这样工作的(每次合并两个邻居块):
+-------------------------------+
| 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | <- x
| 1 0 | 0 1 | 0 1 | 0 1 | <- first time merge
| 0 0 1 1 | 0 0 1 0 | <- second time merge
| 0 0 0 0 0 1 0 1 | <- third time ( answer = 00000101 = 5)
+-------------------------------+
c++ 20 std:: popcount
以下建议已合并http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0553r4.html,并应将其添加到<bit>头。
我希望用法是这样的:
#include <bit>
#include <iostream>
int main() {
std::cout << std::popcount(0x55) << std::endl;
}
当支持GCC时,我会尝试一下,GCC 9.1.0带有g++-9 -std=c++2a仍然不支持它。
提案说:
标题:< > 命名空间STD { // 25.5.6,计数 模板类T > < conexpr int popcount(T x) noexcept;
and:
模板类T > < conexpr int popcount(T x) noexcept; 约束:T是无符号整数类型(3.9.1 [basic.fundamental])。 返回:x值中的1位数。
std::rotl和std::rotr也被添加来执行循环位旋转:c++中循环移位(旋转)操作的最佳实践
我觉得很无聊,于是对三种方法进行了十亿次迭代。编译器是gcc -O3。CPU就是第一代Macbook Pro里装的东西。
最快的是3.7秒:
static unsigned char wordbits[65536] = { bitcounts of ints between 0 and 65535 };
static int popcount( unsigned int i )
{
return( wordbits[i&0xFFFF] + wordbits[i>>16] );
}
第二名是相同的代码,但查找的是4个字节而不是2个半字。这花了大约5.5秒。
第三名是“横向加法”法,用时8.6秒。
第四名是GCC的__builtin_popcount(),仅为11秒。
一次一个比特的计数方法要慢得多,我厌倦了等待它完成。
因此,如果您最关心的是性能,那么请使用第一种方法。如果您关心它,但又不想在上面花费64Kb的RAM,那么可以使用第二种方法。否则,请使用可读的(但速度较慢)一次一位的方法。
很难想象在什么情况下你会想要使用比特旋转方法。
编辑:这里也有类似的结果。
天真的解决方案
时间复杂度为O(no。n的比特数)
int countSet(unsigned int n)
{
int res=0;
while(n!=0){
res += (n&1);
n >>= 1; // logical right shift, like C unsigned or Java >>>
}
return res;
}
Brian Kerningam的算法
时间复杂度为O(n中设置位的个数)
int countSet(unsigned int n)
{
int res=0;
while(n != 0)
{
n = (n & (n-1));
res++;
}
return res;
}
32位数字的查找表方法-在这种方法中,我们将32位数字分解为4个8位数字的块
时间复杂度为O(1)
static unsigned char table[256]; /* the table size is 256,
the number of values i&0xFF (8 bits) can have */
void initialize() //holds the number of set bits from 0 to 255
{
table[0]=0;
for(unsigned int i=1;i<256;i++)
table[i]=(i&1)+table[i>>1];
}
int countSet(unsigned int n)
{
// 0xff is hexadecimal representation of 8 set bits.
int res=table[n & 0xff];
n=n>>8;
res=res+ table[n & 0xff];
n=n>>8;
res=res+ table[n & 0xff];
n=n>>8;
res=res+ table[n & 0xff];
return res;
}
#!/user/local/bin/perl
$c=0x11BBBBAB;
$count=0;
$m=0x00000001;
for($i=0;$i<32;$i++)
{
$f=$c & $m;
if($f == 1)
{
$count++;
}
$c=$c >> 1;
}
printf("%d",$count);
ive done it through a perl script. the number taken is $c=0x11BBBBAB
B=3 1s
A=2 1s
so in total
1+1+3+3+3+2+3+3=19