代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
当前回答
我总是在竞争性编程中使用它,它很容易写,而且效率很高:
#include <bits/stdc++.h>
using namespace std;
int countOnes(int n) {
bitset<32> b(n);
return b.count();
}
其他回答
我认为Brian Kernighan的方法也很有用… 它的迭代次数和设置位个数一样多。因此,如果我们有一个32位的单词,只设置了高位,那么它将只经过一次循环。
int countSetBits(unsigned int n) {
unsigned int n; // count the number of bits set in n
unsigned int c; // c accumulates the total bits set in n
for (c=0;n>0;n=n&(n-1)) c++;
return c;
}
出版于1988年的C编程语言第二版(由Brian W. Kernighan和Dennis M. Ritchie编写)在练习2-9中提到了这一点。2006年4月19日,Don Knuth向我指出,这种方法“是由Peter Wegner在CACM 3(1960), 322中首次发表的。(同样由德里克·莱默(Derrick Lehmer)独立发现,并于1964年在贝肯巴赫(Beckenbach)编辑的一本书中出版。)
下面是PHP中的一些东西(所有PHP整数都是32位符号,因此是31位):
function bits_population($nInteger)
{
$nPop=0;
while($nInteger)
{
$nInteger^=(1<<(floor(1+log($nInteger)/log(2))-1));
$nPop++;
}
return $nPop;
}
我使用下面的函数。我还没有检查基准测试,但它是有效的。
int msb(int num)
{
int m = 0;
for (int i = 16; i > 0; i = i>>1)
{
// debug(i, num, m);
if(num>>i)
{
m += i;
num>>=i;
}
}
return m;
}
这里有一个到目前为止还没有提到的解决方案,使用位字段。下面的程序使用4种不同的方法对100000000个16位整数数组中的设置位进行计数。计时结果在括号中给出(在MacOSX上,使用gcc -O3):
#include <stdio.h>
#include <stdlib.h>
#define LENGTH 100000000
typedef struct {
unsigned char bit0 : 1;
unsigned char bit1 : 1;
unsigned char bit2 : 1;
unsigned char bit3 : 1;
unsigned char bit4 : 1;
unsigned char bit5 : 1;
unsigned char bit6 : 1;
unsigned char bit7 : 1;
} bits;
unsigned char sum_bits(const unsigned char x) {
const bits *b = (const bits*) &x;
return b->bit0 + b->bit1 + b->bit2 + b->bit3 \
+ b->bit4 + b->bit5 + b->bit6 + b->bit7;
}
int NumberOfSetBits(int i) {
i = i - ((i >> 1) & 0x55555555);
i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
return (((i + (i >> 4)) & 0x0F0F0F0F) * 0x01010101) >> 24;
}
#define out(s) \
printf("bits set: %lu\nbits counted: %lu\n", 8*LENGTH*sizeof(short)*3/4, s);
int main(int argc, char **argv) {
unsigned long i, s;
unsigned short *x = malloc(LENGTH*sizeof(short));
unsigned char lut[65536], *p;
unsigned short *ps;
int *pi;
/* set 3/4 of the bits */
for (i=0; i<LENGTH; ++i)
x[i] = 0xFFF0;
/* sum_bits (1.772s) */
for (i=LENGTH*sizeof(short), p=(unsigned char*) x, s=0; i--; s+=sum_bits(*p++));
out(s);
/* NumberOfSetBits (0.404s) */
for (i=LENGTH*sizeof(short)/sizeof(int), pi=(int*)x, s=0; i--; s+=NumberOfSetBits(*pi++));
out(s);
/* populate lookup table */
for (i=0, p=(unsigned char*) &i; i<sizeof(lut); ++i)
lut[i] = sum_bits(p[0]) + sum_bits(p[1]);
/* 256-bytes lookup table (0.317s) */
for (i=LENGTH*sizeof(short), p=(unsigned char*) x, s=0; i--; s+=lut[*p++]);
out(s);
/* 65536-bytes lookup table (0.250s) */
for (i=LENGTH, ps=x, s=0; i--; s+=lut[*ps++]);
out(s);
free(x);
return 0;
}
虽然位域版本非常可读,但计时结果显示它比NumberOfSetBits()慢了4倍以上。基于查找表的实现仍然要快得多,特别是对于一个65 kB的表。
32位还是32位?我只是在阅读了“破解编码面试”第4版练习5.5(第5章:位操作)后,在Java中使用了这种方法。如果最小有效位是1个增量计数,则右移该整数。
public static int bitCount( int n){
int count = 0;
for (int i=n; i!=0; i = i >> 1){
count += i & 1;
}
return count;
}
我认为这个比常数0x33333333的解更直观,不管它们有多快。这取决于你对“最佳算法”的定义。