代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
当前回答
我总是在竞争性编程中使用它,它很容易写,而且效率很高:
#include <bits/stdc++.h>
using namespace std;
int countOnes(int n) {
bitset<32> b(n);
return b.count();
}
其他回答
几个悬而未决的问题:-
如果这个数是负的呢? 如果这个数字是1024,那么“迭代除以2”方法将迭代10次。
我们可以修改算法以支持负数:-
count = 0
while n != 0
if ((n % 2) == 1 || (n % 2) == -1
count += 1
n /= 2
return count
现在为了克服第二个问题,我们可以编写这样的算法:-
int bit_count(int num)
{
int count=0;
while(num)
{
num=(num)&(num-1);
count++;
}
return count;
}
完整参考请参见:
http://goursaha.freeoda.com/Miscellaneous/IntegerBitCount.html
我给出了两个算法来回答这个问题,
package countSetBitsInAnInteger;
import java.util.Scanner;
public class UsingLoop {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
try {
System.out.println("Enter a integer number to check for set bits in it");
int n = in.nextInt();
System.out.println("Using while loop, we get the number of set bits as: " + usingLoop(n));
System.out.println("Using Brain Kernighan's Algorithm, we get the number of set bits as: " + usingBrainKernighan(n));
System.out.println("Using ");
}
finally {
in.close();
}
}
private static int usingBrainKernighan(int n) {
int count = 0;
while(n > 0) {
n& = (n-1);
count++;
}
return count;
}
/*
Analysis:
Time complexity = O(lgn)
Space complexity = O(1)
*/
private static int usingLoop(int n) {
int count = 0;
for(int i=0; i<32; i++) {
if((n&(1 << i)) != 0)
count++;
}
return count;
}
/*
Analysis:
Time Complexity = O(32) // Maybe the complexity is O(lgn)
Space Complexity = O(1)
*/
}
32位还是32位?我只是在阅读了“破解编码面试”第4版练习5.5(第5章:位操作)后,在Java中使用了这种方法。如果最小有效位是1个增量计数,则右移该整数。
public static int bitCount( int n){
int count = 0;
for (int i=n; i!=0; i = i >> 1){
count += i & 1;
}
return count;
}
我认为这个比常数0x33333333的解更直观,不管它们有多快。这取决于你对“最佳算法”的定义。
你可以:
while(n){
n = n & (n-1);
count++;
}
这背后的逻辑是n-1位从n的最右边的集合位倒出来。
如果n=6,即110,那么5是101,位从n的最右边的集合位倒出来。
因此,如果我们&这两个,我们将在每次迭代中使最右边的位为0,并且总是到下一个最右边的集位。因此,计数设置位。当每一位都被设置时,最糟糕的时间复杂度将是O(log n)。
在我看来,“最好”的解决方案是另一个程序员(或者两年后的原始程序员)可以阅读而不需要大量注释的解决方案。你可能想要最快或最聪明的解决方案,有些人已经提供了,但我更喜欢可读性而不是聪明。
unsigned int bitCount (unsigned int value) {
unsigned int count = 0;
while (value > 0) { // until all bits are zero
if ((value & 1) == 1) // check lower bit
count++;
value >>= 1; // shift bits, removing lower bit
}
return count;
}
如果你想要更快的速度(并且假设你很好地记录了它,以帮助你的继任者),你可以使用表格查找:
// Lookup table for fast calculation of bits set in 8-bit unsigned char.
static unsigned char oneBitsInUChar[] = {
// 0 1 2 3 4 5 6 7 8 9 A B C D E F (<- n)
// =====================================================
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, // 0n
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, // 1n
: : :
4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, // Fn
};
// Function for fast calculation of bits set in 16-bit unsigned short.
unsigned char oneBitsInUShort (unsigned short x) {
return oneBitsInUChar [x >> 8]
+ oneBitsInUChar [x & 0xff];
}
// Function for fast calculation of bits set in 32-bit unsigned int.
unsigned char oneBitsInUInt (unsigned int x) {
return oneBitsInUShort (x >> 16)
+ oneBitsInUShort (x & 0xffff);
}
这些依赖于特定的数据类型大小,所以它们不是那么可移植的。但是,由于许多性能优化是不可移植的,这可能不是一个问题。如果您想要可移植性,我会坚持使用可读的解决方案。