代表数字7的8位像这样:

00000111

设置了三个比特。

确定32位整数中设置位数的算法是什么?


当前回答

public class BinaryCounter {

private int N;

public BinaryCounter(int N) {
    this.N = N;
}

public static void main(String[] args) {

    BinaryCounter counter=new BinaryCounter(7);     
    System.out.println("Number of ones is "+ counter.count());

}

public int count(){
    if(N<=0) return 0;
    int counter=0;
    int K = 0;
    do{
        K = biggestPowerOfTwoSmallerThan(N);
        N = N-K;
        counter++;
    }while (N != 0);
    return counter;

}

private int biggestPowerOfTwoSmallerThan(int N) {
    if(N==1) return 1;
    for(int i=0;i<N;i++){
        if(Math.pow(2, i) > N){
            int power = i-1;
            return (int) Math.pow(2, power);
        }
    }
    return 0;
}
}

其他回答

在我看来,“最好”的解决方案是另一个程序员(或者两年后的原始程序员)可以阅读而不需要大量注释的解决方案。你可能想要最快或最聪明的解决方案,有些人已经提供了,但我更喜欢可读性而不是聪明。

unsigned int bitCount (unsigned int value) {
    unsigned int count = 0;
    while (value > 0) {           // until all bits are zero
        if ((value & 1) == 1)     // check lower bit
            count++;
        value >>= 1;              // shift bits, removing lower bit
    }
    return count;
}

如果你想要更快的速度(并且假设你很好地记录了它,以帮助你的继任者),你可以使用表格查找:

// Lookup table for fast calculation of bits set in 8-bit unsigned char.

static unsigned char oneBitsInUChar[] = {
//  0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F (<- n)
//  =====================================================
    0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, // 0n
    1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, // 1n
    : : :
    4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, // Fn
};

// Function for fast calculation of bits set in 16-bit unsigned short.

unsigned char oneBitsInUShort (unsigned short x) {
    return oneBitsInUChar [x >>    8]
         + oneBitsInUChar [x &  0xff];
}

// Function for fast calculation of bits set in 32-bit unsigned int.

unsigned char oneBitsInUInt (unsigned int x) {
    return oneBitsInUShort (x >>     16)
         + oneBitsInUShort (x &  0xffff);
}

这些依赖于特定的数据类型大小,所以它们不是那么可移植的。但是,由于许多性能优化是不可移植的,这可能不是一个问题。如果您想要可移植性,我会坚持使用可读的解决方案。

我认为最快的方法——不使用查找表和popcount——是以下方法。它仅通过12次操作来计数设置位。

int popcount(int v) {
    v = v - ((v >> 1) & 0x55555555);                // put count of each 2 bits into those 2 bits
    v = (v & 0x33333333) + ((v >> 2) & 0x33333333); // put count of each 4 bits into those 4 bits  
    return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
}

它之所以有效,是因为你可以通过将设置位分为两半来计算总设置位的数量,计算两半设置位的数量,然后将它们相加。也被称为分而治之范式。让我们来详细谈谈。

v = v - ((v >> 1) & 0x55555555); 

两位位数可以是0b00、0b01或0b10。让我们试着在2位上解决这个问题。

 ---------------------------------------------
 |   v    |   (v >> 1) & 0b0101   |  v - x   |
 ---------------------------------------------
   0b00           0b00               0b00   
   0b01           0b00               0b01     
   0b10           0b01               0b01
   0b11           0b01               0b10

这就是所需要的:最后一列显示每两个位对中设置位的计数。如果两个比特数>= 2 (0b10),则产生0b01,否则产生0b00。

v = (v & 0x33333333) + ((v >> 2) & 0x33333333); 

这句话应该很容易理解。在第一个操作之后,我们每两个比特中就有一个set位的计数,现在我们每4个比特中就有一个set位的计数。

v & 0b00110011         //masks out even two bits
(v >> 2) & 0b00110011  // masks out odd two bits

然后我们把上面的结果加起来,得到4位的集合位总数。最后一个陈述是最棘手的。

c = ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;

让我们进一步分析一下……

v + (v >> 4)

这和第二种说法很相似;我们以4为一组来计数集合位。因为我们之前的运算,我们知道每一个咬痕都有一个集合位的计数。让我们看一个例子。假设我们有字节0b01000010。这意味着第一个啃食有它的4位设置,第二个有它的2位设置。现在我们把这些小块加在一起。

v = 0b01000010
(v >> 4) = 0b00000100
v + (v >> 4) = 0b01000010 + 0b00000100

它为我们提供了一个字节中set位的计数,在第二个nibble 0b01000110中,因此我们掩码了该数字中所有字节的前四个字节(丢弃它们)。

0b01000110 & 0x0F = 0b00000110

现在每个字节都有一个集合位的计数。我们需要把它们全部加起来。诀窍是将结果乘以0b10101010,它有一个有趣的属性。如果我们的数字有四个字节,A B C D,它将产生一个新的数字,包含这些字节A+B+C+D B+C+D C+D。一个4字节的数字最多可以设置32位,可以表示为0b00100000。

我们现在需要的是第一个字节,它是所有字节中所有set位的和,我们通过>> 24得到它。该算法是为32位字设计的,但可以很容易地修改为64位字。

从Python 3.10开始,你将能够使用int.bit_count()函数,但目前,你可以自己定义这个函数。

def bit_count(integer):
    return bin(integer).count("1")

当你写出比特模式时,“黑客的喜悦”比特旋转变得更加清晰。

unsigned int bitCount(unsigned int x)
{
  x = ((x >> 1) & 0b01010101010101010101010101010101)
     + (x       & 0b01010101010101010101010101010101);
  x = ((x >> 2) & 0b00110011001100110011001100110011)
     + (x       & 0b00110011001100110011001100110011); 
  x = ((x >> 4) & 0b00001111000011110000111100001111)
     + (x       & 0b00001111000011110000111100001111); 
  x = ((x >> 8) & 0b00000000111111110000000011111111)
     + (x       & 0b00000000111111110000000011111111); 
  x = ((x >> 16)& 0b00000000000000001111111111111111)
     + (x       & 0b00000000000000001111111111111111); 
  return x;
}

第一步将偶数位加到奇数位上,产生每两个位的和。其他步骤将高阶数据块添加到低阶数据块,将数据块的大小一直增加一倍,直到最终计数占用整个int。

你可以:

while(n){
    n = n & (n-1);
    count++;
}

这背后的逻辑是n-1位从n的最右边的集合位倒出来。

如果n=6,即110,那么5是101,位从n的最右边的集合位倒出来。

因此,如果我们&这两个,我们将在每次迭代中使最右边的位为0,并且总是到下一个最右边的集位。因此,计数设置位。当每一位都被设置时,最糟糕的时间复杂度将是O(log n)。