代表数字7的8位像这样:

00000111

设置了三个比特。

确定32位整数中设置位数的算法是什么?


当前回答

Java JDK1.5

Integer.bitCount (n);

其中n是要计算1的数。

检查,

Integer.highestOneBit(n);
Integer.lowestOneBit(n);
Integer.numberOfLeadingZeros(n);
Integer.numberOfTrailingZeros(n);

//Beginning with the value 1, rotate left 16 times
     n = 1;
         for (int i = 0; i < 16; i++) {
            n = Integer.rotateLeft(n, 1);
            System.out.println(n);
         }

其他回答

32位还是32位?我只是在阅读了“破解编码面试”第4版练习5.5(第5章:位操作)后,在Java中使用了这种方法。如果最小有效位是1个增量计数,则右移该整数。

public static int bitCount( int n){
    int count = 0;
    for (int i=n; i!=0; i = i >> 1){
        count += i & 1;
    }
    return count;
}

我认为这个比常数0x33333333的解更直观,不管它们有多快。这取决于你对“最佳算法”的定义。

我特别喜欢这个来自《财富》的例子:

#define BITCOUNT(x)    (((BX_(x)+(BX_(x)>>4)) & 0x0F0F0F0F) % 255)
#define BX_(x)         ((x) - (((x)>>1)&0x77777777)
                             - (((x)>>2)&0x33333333)
                             - (((x)>>3)&0x11111111))

我最喜欢它,因为它太漂亮了!

如果你使用c++,另一个选择是使用模板元编程:

// recursive template to sum bits in an int
template <int BITS>
int countBits(int val) {
        // return the least significant bit plus the result of calling ourselves with
        // .. the shifted value
        return (val & 0x1) + countBits<BITS-1>(val >> 1);
}

// template specialisation to terminate the recursion when there's only one bit left
template<>
int countBits<1>(int val) {
        return val & 0x1;
}

用法如下:

// to count bits in a byte/char (this returns 8)
countBits<8>( 255 )

// another byte (this returns 7)
countBits<8>( 254 )

// counting bits in a word/short (this returns 1)
countBits<16>( 256 )

当然,你可以进一步扩展这个模板来使用不同的类型(甚至是自动检测位大小),但为了清晰起见,我让它保持简单。

edit:忘了说这很好,因为它应该在任何c++编译器中工作,它基本上只是为你展开循环,如果一个常量值用于比特计数(换句话说,我很确定这是你能找到的最快的通用方法)

这是在golang中的实现

func CountBitSet(n int) int {


    count := 0
    for n > 0 {
      count += n & 1
      n >>= 1

    }
    return count
}

天真的解决方案

时间复杂度为O(no。n的比特数)

int countSet(unsigned int n)
{
    int res=0;
    while(n!=0){
      res += (n&1);
      n >>= 1;      // logical right shift, like C unsigned or Java >>>
    }
   return res;
}

Brian Kerningam的算法

时间复杂度为O(n中设置位的个数)

int countSet(unsigned int n)
{
  int res=0;
  while(n != 0)
  {
    n = (n & (n-1));
    res++;
  }
  return res;
} 

32位数字的查找表方法-在这种方法中,我们将32位数字分解为4个8位数字的块

时间复杂度为O(1)

static unsigned char table[256]; /* the table size is 256,
                        the number of values i&0xFF (8 bits) can have */

void initialize() //holds the number of set bits from 0 to 255
{
  table[0]=0;
  for(unsigned int i=1;i<256;i++)
     table[i]=(i&1)+table[i>>1];
}

int countSet(unsigned int n)
{
  // 0xff is hexadecimal representation of 8 set bits.
  int res=table[n & 0xff];
  n=n>>8;
  res=res+ table[n & 0xff];
  n=n>>8;
  res=res+ table[n & 0xff];
  n=n>>8;
  res=res+ table[n & 0xff];
  return res;
}