代表数字7的8位像这样:

00000111

设置了三个比特。

确定32位整数中设置位数的算法是什么?


当前回答

private int get_bits_set(int v)
{
    int c; // 'c' accumulates the total bits set in 'v'
    for (c = 0; v>0; c++)
    {
        v &= v - 1; // Clear the least significant bit set
    }
    return c;
}

其他回答

从Python 3.10开始,你将能够使用int.bit_count()函数,但目前,你可以自己定义这个函数。

def bit_count(integer):
    return bin(integer).count("1")

在Java 8或9中只调用Integer。bitCount。

Kotlin 1.4 之前

        fun NumberOfSetBits(i: Int): Int {
            var i = i
            i -= (i ushr 1 and 0x55555555)
            i = (i and 0x33333333) + (i ushr 2 and 0x33333333)
            return (i + (i ushr 4) and 0x0F0F0F0F) * 0x01010101 ushr 24
        }

这或多或少是上面那个答案的翻版。

它带有Java补丁,然后使用IntelliJ IDEA Community Edition中的转换器进行转换

1.4及以上(截至2021-05-05 -未来可能会改变)。

        fun NumberOfSetBits(i: Int): Int {
            return i.countOneBits()
        }

在底层,它使用Integer。bitCount如下所示:

@SinceKotlin("1.4")
@WasExperimental(ExperimentalStdlibApi::class)
@kotlin.internal.InlineOnly
public actual inline fun Int.countOneBits(): Int = Integer.bitCount(this)

我发现了一个在数组中使用SIMD指令(SSSE3和AVX2)的位计数实现。它的性能比使用__popcnt64内禀函数要好2-2.5倍。

SSSE3版:

#include <smmintrin.h>
#include <stdint.h>

const __m128i Z = _mm_set1_epi8(0x0);
const __m128i F = _mm_set1_epi8(0xF);
//Vector with pre-calculated bit count:
const __m128i T = _mm_setr_epi8(0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4);

uint64_t BitCount(const uint8_t * src, size_t size)
{
    __m128i _sum =  _mm128_setzero_si128();
    for (size_t i = 0; i < size; i += 16)
    {
        //load 16-byte vector
        __m128i _src = _mm_loadu_si128((__m128i*)(src + i));
        //get low 4 bit for every byte in vector
        __m128i lo = _mm_and_si128(_src, F);
        //sum precalculated value from T
        _sum = _mm_add_epi64(_sum, _mm_sad_epu8(Z, _mm_shuffle_epi8(T, lo)));
        //get high 4 bit for every byte in vector
        __m128i hi = _mm_and_si128(_mm_srli_epi16(_src, 4), F);
        //sum precalculated value from T
        _sum = _mm_add_epi64(_sum, _mm_sad_epu8(Z, _mm_shuffle_epi8(T, hi)));
    }
    uint64_t sum[2];
    _mm_storeu_si128((__m128i*)sum, _sum);
    return sum[0] + sum[1];
}

AVX2 版本:

#include <immintrin.h>
#include <stdint.h>

const __m256i Z = _mm256_set1_epi8(0x0);
const __m256i F = _mm256_set1_epi8(0xF);
//Vector with pre-calculated bit count:
const __m256i T = _mm256_setr_epi8(0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 
                                   0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4);

uint64_t BitCount(const uint8_t * src, size_t size)
{
    __m256i _sum =  _mm256_setzero_si256();
    for (size_t i = 0; i < size; i += 32)
    {
        //load 32-byte vector
        __m256i _src = _mm256_loadu_si256((__m256i*)(src + i));
        //get low 4 bit for every byte in vector
        __m256i lo = _mm256_and_si256(_src, F);
        //sum precalculated value from T
        _sum = _mm256_add_epi64(_sum, _mm256_sad_epu8(Z, _mm256_shuffle_epi8(T, lo)));
        //get high 4 bit for every byte in vector
        __m256i hi = _mm256_and_si256(_mm256_srli_epi16(_src, 4), F);
        //sum precalculated value from T
        _sum = _mm256_add_epi64(_sum, _mm256_sad_epu8(Z, _mm256_shuffle_epi8(T, hi)));
    }
    uint64_t sum[4];
    _mm256_storeu_si256((__m256i*)sum, _sum);
    return sum[0] + sum[1] + sum[2] + sum[3];
}

Python的解决方案:

def hammingWeight(n: int) -> int:
    sums = 0
    while (n!=0):
        sums+=1
        n = n &(n-1)

    return sums

在二进制表示中,n中最不有效的1位总是对应n - 1中的0位。因此,对n和n - 1这两个数进行and运算总是将n中最不有效的1位翻转为0,并保持所有其他位相同。