代表数字7的8位像这样:

00000111

设置了三个比特。

确定32位整数中设置位数的算法是什么?


当前回答

摘自《黑客的喜悦》第66页,图5-2

int pop(unsigned x)
{
    x = x - ((x >> 1) & 0x55555555);
    x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
    x = (x + (x >> 4)) & 0x0F0F0F0F;
    x = x + (x >> 8);
    x = x + (x >> 16);
    return x & 0x0000003F;
}

执行大约20条指令(依赖于arch),没有分支。黑客的喜悦是令人愉快的!强烈推荐。

其他回答

一个简单的算法来计算设置位的数量:

int countbits(n) {
    int count = 0;
    while(n != 0) {
        n = n & (n-1);
        count++;
    }
    return count;
}

以11(1011)为例,尝试手动运行该算法。它应该对你有很大帮助!

我个人使用这个:

  public static int myBitCount(long L){
      int count = 0;
      while (L != 0) {
         count++;
         L ^= L & -L; 
      }
      return count;
  }

这里有一个到目前为止还没有提到的解决方案,使用位字段。下面的程序使用4种不同的方法对100000000个16位整数数组中的设置位进行计数。计时结果在括号中给出(在MacOSX上,使用gcc -O3):

#include <stdio.h>
#include <stdlib.h>

#define LENGTH 100000000

typedef struct {
    unsigned char bit0 : 1;
    unsigned char bit1 : 1;
    unsigned char bit2 : 1;
    unsigned char bit3 : 1;
    unsigned char bit4 : 1;
    unsigned char bit5 : 1;
    unsigned char bit6 : 1;
    unsigned char bit7 : 1;
} bits;

unsigned char sum_bits(const unsigned char x) {
    const bits *b = (const bits*) &x;
    return b->bit0 + b->bit1 + b->bit2 + b->bit3 \
         + b->bit4 + b->bit5 + b->bit6 + b->bit7;
}

int NumberOfSetBits(int i) {
    i = i - ((i >> 1) & 0x55555555);
    i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
    return (((i + (i >> 4)) & 0x0F0F0F0F) * 0x01010101) >> 24;
}

#define out(s) \
    printf("bits set: %lu\nbits counted: %lu\n", 8*LENGTH*sizeof(short)*3/4, s);

int main(int argc, char **argv) {
    unsigned long i, s;
    unsigned short *x = malloc(LENGTH*sizeof(short));
    unsigned char lut[65536], *p;
    unsigned short *ps;
    int *pi;

    /* set 3/4 of the bits */
    for (i=0; i<LENGTH; ++i)
        x[i] = 0xFFF0;

    /* sum_bits (1.772s) */
    for (i=LENGTH*sizeof(short), p=(unsigned char*) x, s=0; i--; s+=sum_bits(*p++));
    out(s);

    /* NumberOfSetBits (0.404s) */
    for (i=LENGTH*sizeof(short)/sizeof(int), pi=(int*)x, s=0; i--; s+=NumberOfSetBits(*pi++));
    out(s);

    /* populate lookup table */
    for (i=0, p=(unsigned char*) &i; i<sizeof(lut); ++i)
        lut[i] = sum_bits(p[0]) + sum_bits(p[1]);

    /* 256-bytes lookup table (0.317s) */
    for (i=LENGTH*sizeof(short), p=(unsigned char*) x, s=0; i--; s+=lut[*p++]);
    out(s);

    /* 65536-bytes lookup table (0.250s) */
    for (i=LENGTH, ps=x, s=0; i--; s+=lut[*ps++]);
    out(s);

    free(x);
    return 0;
}

虽然位域版本非常可读,但计时结果显示它比NumberOfSetBits()慢了4倍以上。基于查找表的实现仍然要快得多,特别是对于一个65 kB的表。

这不是最快或最好的解决方案,但我以自己的方式发现了同样的问题,我开始反复思考。最后我意识到它可以这样做,如果你从数学方面得到这个问题,画一个图,然后你发现它是一个有周期部分的函数,然后你意识到周期之间的差异……所以你看:

unsigned int f(unsigned int x)
{
    switch (x) {
        case 0:
            return 0;
        case 1:
            return 1;
        case 2:
            return 1;
        case 3:
            return 2;
        default:
            return f(x/4) + f(x%4);
    }
}

32位还是32位?我只是在阅读了“破解编码面试”第4版练习5.5(第5章:位操作)后,在Java中使用了这种方法。如果最小有效位是1个增量计数,则右移该整数。

public static int bitCount( int n){
    int count = 0;
    for (int i=n; i!=0; i = i >> 1){
        count += i & 1;
    }
    return count;
}

我认为这个比常数0x33333333的解更直观,不管它们有多快。这取决于你对“最佳算法”的定义。