代表数字7的8位像这样:

00000111

设置了三个比特。

确定32位整数中设置位数的算法是什么?


当前回答

unsigned int count_bit(unsigned int x)
{
  x = (x & 0x55555555) + ((x >> 1) & 0x55555555);
  x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
  x = (x & 0x0F0F0F0F) + ((x >> 4) & 0x0F0F0F0F);
  x = (x & 0x00FF00FF) + ((x >> 8) & 0x00FF00FF);
  x = (x & 0x0000FFFF) + ((x >> 16)& 0x0000FFFF);
  return x;
}

我来解释一下这个算法。

该算法基于分治算法。假设有一个8位整数213(二进制的11010101),算法是这样工作的(每次合并两个邻居块):

+-------------------------------+
| 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |  <- x
|  1 0  |  0 1  |  0 1  |  0 1  |  <- first time merge
|    0 0 1 1    |    0 0 1 0    |  <- second time merge
|        0 0 0 0 0 1 0 1        |  <- third time ( answer = 00000101 = 5)
+-------------------------------+

其他回答

我个人使用这个:

  public static int myBitCount(long L){
      int count = 0;
      while (L != 0) {
         count++;
         L ^= L & -L; 
      }
      return count;
  }

对于那些想要在c++ 11中为任何无符号整数类型作为consexpr函数的人(tacklelib/include/tacklelib/utility/math.hpp):

#include <stdint.h>
#include <limits>
#include <type_traits>

const constexpr uint32_t uint32_max = (std::numeric_limits<uint32_t>::max)();

namespace detail
{
    template <typename T>
    inline constexpr T _count_bits_0(const T & v)
    {
        return v - ((v >> 1) & 0x55555555);
    }

    template <typename T>
    inline constexpr T _count_bits_1(const T & v)
    {
        return (v & 0x33333333) + ((v >> 2) & 0x33333333);
    }

    template <typename T>
    inline constexpr T _count_bits_2(const T & v)
    {
        return (v + (v >> 4)) & 0x0F0F0F0F;
    }

    template <typename T>
    inline constexpr T _count_bits_3(const T & v)
    {
        return v + (v >> 8);
    }

    template <typename T>
    inline constexpr T _count_bits_4(const T & v)
    {
        return v + (v >> 16);
    }

    template <typename T>
    inline constexpr T _count_bits_5(const T & v)
    {
        return v & 0x0000003F;
    }

    template <typename T, bool greater_than_uint32>
    struct _impl
    {
        static inline constexpr T _count_bits_with_shift(const T & v)
        {
            return
                detail::_count_bits_5(
                    detail::_count_bits_4(
                        detail::_count_bits_3(
                            detail::_count_bits_2(
                                detail::_count_bits_1(
                                    detail::_count_bits_0(v)))))) + count_bits(v >> 32);
        }
    };

    template <typename T>
    struct _impl<T, false>
    {
        static inline constexpr T _count_bits_with_shift(const T & v)
        {
            return 0;
        }
    };
}

template <typename T>
inline constexpr T count_bits(const T & v)
{
    static_assert(std::is_integral<T>::value, "type T must be an integer");
    static_assert(!std::is_signed<T>::value, "type T must be not signed");

    return uint32_max >= v ?
        detail::_count_bits_5(
            detail::_count_bits_4(
                detail::_count_bits_3(
                    detail::_count_bits_2(
                        detail::_count_bits_1(
                            detail::_count_bits_0(v)))))) :
        detail::_impl<T, sizeof(uint32_t) < sizeof(v)>::_count_bits_with_shift(v);
}

谷歌测试库中的附加测试:

#include <stdlib.h>
#include <time.h>

namespace {
    template <typename T>
    inline uint32_t _test_count_bits(const T & v)
    {
        uint32_t count = 0;
        T n = v;
        while (n > 0) {
            if (n % 2) {
                count += 1;
            }
            n /= 2;
        }
        return count;
    }
}

TEST(FunctionsTest, random_count_bits_uint32_100K)
{
    srand(uint_t(time(NULL)));
    for (uint32_t i = 0; i < 100000; i++) {
        const uint32_t r = uint32_t(rand()) + (uint32_t(rand()) << 16);
        ASSERT_EQ(_test_count_bits(r), count_bits(r));
    }
}

TEST(FunctionsTest, random_count_bits_uint64_100K)
{
    srand(uint_t(time(NULL)));
    for (uint32_t i = 0; i < 100000; i++) {
        const uint64_t r = uint64_t(rand()) + (uint64_t(rand()) << 16) + (uint64_t(rand()) << 32) + (uint64_t(rand()) << 48);
        ASSERT_EQ(_test_count_bits(r), count_bits(r));
    }
}
int countBits(int x)
{
    int n = 0;
    if (x) do n++;
           while(x=x&(x-1));
    return n;
}   

或者:

int countBits(int x) { return (x)? 1+countBits(x&(x-1)): 0; }

在我最初的回答7年半之后,@PeterMortensen质疑这是否是有效的C语法。我发布了一个在线编译器的链接,显示它实际上是完全有效的语法(代码如下)。

#include <stdio.h>
int countBits(int x)
{
    int n = 0;
    if (x) do n++;           /* Totally Normal Valid code. */
           while(x=x&(x-1)); /* Nothing to see here.       */
    return n;
}   
 
int main(void) {
    printf("%d\n", countBits(25));
    return 0;
}
 

输出:

3

如果你想重新写清楚,它看起来是这样的:

if (x)
{
    do
    {
        n++;
    } while(x=x&(x-1));
}

但在我看来,这太过分了。

然而,我也意识到函数可以变得更短,但可能更神秘,写为:

int countBits(int x)
{
    int n = 0;
    while (x) x=(n++,x&(x-1));
    return n;
}   

我使用下面的函数。我还没有检查基准测试,但它是有效的。

int msb(int num)
{
    int m = 0;
    for (int i = 16; i > 0; i = i>>1)
    {
        // debug(i, num, m);
        if(num>>i)
        {
            m += i;
            num>>=i;
        }
    }
    return m;
}

我给出了两个算法来回答这个问题,

package countSetBitsInAnInteger;

import java.util.Scanner;

public class UsingLoop {

    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        try {
            System.out.println("Enter a integer number to check for set bits in it");
            int n = in.nextInt();
            System.out.println("Using while loop, we get the number of set bits as: " + usingLoop(n));
            System.out.println("Using Brain Kernighan's Algorithm, we get the number of set bits as: " + usingBrainKernighan(n));
            System.out.println("Using ");
        }
        finally {
            in.close();
        }
    }

    private static int usingBrainKernighan(int n) {
        int count = 0;
        while(n > 0) {
            n& = (n-1);
            count++;
        }
        return count;
    }

    /*
        Analysis:
            Time complexity = O(lgn)
            Space complexity = O(1)
    */

    private static int usingLoop(int n) {
        int count = 0;
        for(int i=0; i<32; i++) {
            if((n&(1 << i)) != 0)
                count++;
        }
        return count;
    }

    /*
        Analysis:
            Time Complexity = O(32) // Maybe the complexity is O(lgn)
            Space Complexity = O(1)
    */
}