代表数字7的8位像这样:

00000111

设置了三个比特。

确定32位整数中设置位数的算法是什么?


当前回答

unsigned int count_bit(unsigned int x)
{
  x = (x & 0x55555555) + ((x >> 1) & 0x55555555);
  x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
  x = (x & 0x0F0F0F0F) + ((x >> 4) & 0x0F0F0F0F);
  x = (x & 0x00FF00FF) + ((x >> 8) & 0x00FF00FF);
  x = (x & 0x0000FFFF) + ((x >> 16)& 0x0000FFFF);
  return x;
}

我来解释一下这个算法。

该算法基于分治算法。假设有一个8位整数213(二进制的11010101),算法是这样工作的(每次合并两个邻居块):

+-------------------------------+
| 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |  <- x
|  1 0  |  0 1  |  0 1  |  0 1  |  <- first time merge
|    0 0 1 1    |    0 0 1 0    |  <- second time merge
|        0 0 0 0 0 1 0 1        |  <- third time ( answer = 00000101 = 5)
+-------------------------------+

其他回答

我给出了两个算法来回答这个问题,

package countSetBitsInAnInteger;

import java.util.Scanner;

public class UsingLoop {

    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        try {
            System.out.println("Enter a integer number to check for set bits in it");
            int n = in.nextInt();
            System.out.println("Using while loop, we get the number of set bits as: " + usingLoop(n));
            System.out.println("Using Brain Kernighan's Algorithm, we get the number of set bits as: " + usingBrainKernighan(n));
            System.out.println("Using ");
        }
        finally {
            in.close();
        }
    }

    private static int usingBrainKernighan(int n) {
        int count = 0;
        while(n > 0) {
            n& = (n-1);
            count++;
        }
        return count;
    }

    /*
        Analysis:
            Time complexity = O(lgn)
            Space complexity = O(1)
    */

    private static int usingLoop(int n) {
        int count = 0;
        for(int i=0; i<32; i++) {
            if((n&(1 << i)) != 0)
                count++;
        }
        return count;
    }

    /*
        Analysis:
            Time Complexity = O(32) // Maybe the complexity is O(lgn)
            Space Complexity = O(1)
    */
}

一个简单的方法,应该工作得很好少量的比特它像这样(在这个例子中的4位):

(i & 1) + (i & 2)/2 + (i & 4)/4 + (i & 8)/8

对于少量的比特,其他人会推荐这种简单的解决方案吗?

这不是最快或最好的解决方案,但我以自己的方式发现了同样的问题,我开始反复思考。最后我意识到它可以这样做,如果你从数学方面得到这个问题,画一个图,然后你发现它是一个有周期部分的函数,然后你意识到周期之间的差异……所以你看:

unsigned int f(unsigned int x)
{
    switch (x) {
        case 0:
            return 0;
        case 1:
            return 1;
        case 2:
            return 1;
        case 3:
            return 2;
        default:
            return f(x/4) + f(x%4);
    }
}

这是一个有助于了解您的微架构的问题。我只是在gcc 4.3.3下用-O3编译的两个变量使用c++内联来计时,以消除函数调用开销,十亿次迭代,保持所有计数的运行总和,以确保编译器不删除任何重要的东西,使用rdtsc计时(精确的时钟周期)。

inline int pop2(unsigned x, unsigned y)
{
    x = x - ((x >> 1) & 0x55555555);
    y = y - ((y >> 1) & 0x55555555);
    x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
    y = (y & 0x33333333) + ((y >> 2) & 0x33333333);
    x = (x + (x >> 4)) & 0x0F0F0F0F;
    y = (y + (y >> 4)) & 0x0F0F0F0F;
    x = x + (x >> 8);
    y = y + (y >> 8);
    x = x + (x >> 16);
    y = y + (y >> 16);
    return (x+y) & 0x000000FF;
}

未经修改的黑客喜悦需要122亿周期。我的并行版本(计算的比特数是它的两倍)的运行周期为13.0千兆周期。在2.4GHz的酷睿双核上,两者总共消耗了10.5秒。在这个时钟频率下,25千兆周期= 10秒多一点,所以我相信我的计时是正确的。

这与指令依赖链有关,这对算法非常不利。通过使用一对64位寄存器,我几乎可以再次将速度提高一倍。事实上,如果我聪明一点,早点加上x+y,我就可以减少一些移位。64位版本做了一些小的调整,结果是相同的,但又增加了一倍的比特数。

对于128位SIMD寄存器,这是另一个因素,SSE指令集通常也有聪明的快捷方式。

没有理由让代码特别透明。该算法界面简单,可在多处在线引用,并能通过全面的单元测试。偶然发现它的程序员甚至可能学到一些东西。这些位操作在机器级别上是非常自然的。

好吧,我决定搁置调整后的64位版本。对于这个sizeof(unsigned long) == 8

inline int pop2(unsigned long x, unsigned long y)
{
    x = x - ((x >> 1) & 0x5555555555555555);
    y = y - ((y >> 1) & 0x5555555555555555);
    x = (x & 0x3333333333333333) + ((x >> 2) & 0x3333333333333333);
    y = (y & 0x3333333333333333) + ((y >> 2) & 0x3333333333333333);
    x = (x + (x >> 4)) & 0x0F0F0F0F0F0F0F0F;
    y = (y + (y >> 4)) & 0x0F0F0F0F0F0F0F0F;
    x = x + y; 
    x = x + (x >> 8);
    x = x + (x >> 16);
    x = x + (x >> 32); 
    return x & 0xFF;
}

这看起来是对的(不过我没有仔细测试)。现在计时结果是10.70亿周期/ 14.1亿周期。后面的数字加起来是1280亿比特,相当于这台机器运行了5.9秒。非并行版本稍微加快了一点,因为我在64位模式下运行,它更喜欢64位寄存器,而不是32位寄存器。

让我们看看这里是否有更多的OOO管道。这有点复杂,所以我实际上测试了一些。每一项单独加起来是64,所有项加起来是256。

inline int pop4(unsigned long x, unsigned long y, 
                unsigned long u, unsigned long v)
{
  enum { m1 = 0x5555555555555555, 
         m2 = 0x3333333333333333, 
         m3 = 0x0F0F0F0F0F0F0F0F, 
         m4 = 0x000000FF000000FF };

    x = x - ((x >> 1) & m1);
    y = y - ((y >> 1) & m1);
    u = u - ((u >> 1) & m1);
    v = v - ((v >> 1) & m1);
    x = (x & m2) + ((x >> 2) & m2);
    y = (y & m2) + ((y >> 2) & m2);
    u = (u & m2) + ((u >> 2) & m2);
    v = (v & m2) + ((v >> 2) & m2);
    x = x + y; 
    u = u + v; 
    x = (x & m3) + ((x >> 4) & m3);
    u = (u & m3) + ((u >> 4) & m3);
    x = x + u; 
    x = x + (x >> 8);
    x = x + (x >> 16);
    x = x & m4; 
    x = x + (x >> 32);
    return x & 0x000001FF;
}

我兴奋了一会儿,但结果是gcc在-O3上玩内联的把戏,尽管我在一些测试中没有使用内联关键字。当我让gcc玩把戏时,对pop4()的十亿次调用需要12.56 gigacycles,但我确定它是将参数折叠为常量表达式。更实际的数字似乎是19.6gc,以实现30%的加速。我的测试循环现在看起来像这样,确保每个参数足够不同,以阻止gcc耍花招。

   hitime b4 = rdtsc(); 
   for (unsigned long i = 10L * 1000*1000*1000; i < 11L * 1000*1000*1000; ++i) 
      sum += pop4 (i,  i^1, ~i, i|1); 
   hitime e4 = rdtsc(); 

2560亿比特加起来在8.17秒内过去了。根据16位表查找的基准测试,3200万比特的计算结果为1.02秒。不能直接比较,因为另一个工作台没有给出时钟速度,但看起来我已经把64KB表版本的鼻涕打出来了,这首先是L1缓存的悲惨使用。

更新:决定做明显的和创建pop6()通过增加四个重复的行。结果是22.8gc, 3840亿比特在9.5秒内加起来。所以还有20%现在是800毫秒,320亿比特。

unsigned int count_bit(unsigned int x)
{
  x = (x & 0x55555555) + ((x >> 1) & 0x55555555);
  x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
  x = (x & 0x0F0F0F0F) + ((x >> 4) & 0x0F0F0F0F);
  x = (x & 0x00FF00FF) + ((x >> 8) & 0x00FF00FF);
  x = (x & 0x0000FFFF) + ((x >> 16)& 0x0000FFFF);
  return x;
}

我来解释一下这个算法。

该算法基于分治算法。假设有一个8位整数213(二进制的11010101),算法是这样工作的(每次合并两个邻居块):

+-------------------------------+
| 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |  <- x
|  1 0  |  0 1  |  0 1  |  0 1  |  <- first time merge
|    0 0 1 1    |    0 0 1 0    |  <- second time merge
|        0 0 0 0 0 1 0 1        |  <- third time ( answer = 00000101 = 5)
+-------------------------------+