代表数字7的8位像这样:

00000111

设置了三个比特。

确定32位整数中设置位数的算法是什么?


当前回答

这是一个有助于了解您的微架构的问题。我只是在gcc 4.3.3下用-O3编译的两个变量使用c++内联来计时,以消除函数调用开销,十亿次迭代,保持所有计数的运行总和,以确保编译器不删除任何重要的东西,使用rdtsc计时(精确的时钟周期)。

inline int pop2(unsigned x, unsigned y)
{
    x = x - ((x >> 1) & 0x55555555);
    y = y - ((y >> 1) & 0x55555555);
    x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
    y = (y & 0x33333333) + ((y >> 2) & 0x33333333);
    x = (x + (x >> 4)) & 0x0F0F0F0F;
    y = (y + (y >> 4)) & 0x0F0F0F0F;
    x = x + (x >> 8);
    y = y + (y >> 8);
    x = x + (x >> 16);
    y = y + (y >> 16);
    return (x+y) & 0x000000FF;
}

未经修改的黑客喜悦需要122亿周期。我的并行版本(计算的比特数是它的两倍)的运行周期为13.0千兆周期。在2.4GHz的酷睿双核上,两者总共消耗了10.5秒。在这个时钟频率下,25千兆周期= 10秒多一点,所以我相信我的计时是正确的。

这与指令依赖链有关,这对算法非常不利。通过使用一对64位寄存器,我几乎可以再次将速度提高一倍。事实上,如果我聪明一点,早点加上x+y,我就可以减少一些移位。64位版本做了一些小的调整,结果是相同的,但又增加了一倍的比特数。

对于128位SIMD寄存器,这是另一个因素,SSE指令集通常也有聪明的快捷方式。

没有理由让代码特别透明。该算法界面简单,可在多处在线引用,并能通过全面的单元测试。偶然发现它的程序员甚至可能学到一些东西。这些位操作在机器级别上是非常自然的。

好吧,我决定搁置调整后的64位版本。对于这个sizeof(unsigned long) == 8

inline int pop2(unsigned long x, unsigned long y)
{
    x = x - ((x >> 1) & 0x5555555555555555);
    y = y - ((y >> 1) & 0x5555555555555555);
    x = (x & 0x3333333333333333) + ((x >> 2) & 0x3333333333333333);
    y = (y & 0x3333333333333333) + ((y >> 2) & 0x3333333333333333);
    x = (x + (x >> 4)) & 0x0F0F0F0F0F0F0F0F;
    y = (y + (y >> 4)) & 0x0F0F0F0F0F0F0F0F;
    x = x + y; 
    x = x + (x >> 8);
    x = x + (x >> 16);
    x = x + (x >> 32); 
    return x & 0xFF;
}

这看起来是对的(不过我没有仔细测试)。现在计时结果是10.70亿周期/ 14.1亿周期。后面的数字加起来是1280亿比特,相当于这台机器运行了5.9秒。非并行版本稍微加快了一点,因为我在64位模式下运行,它更喜欢64位寄存器,而不是32位寄存器。

让我们看看这里是否有更多的OOO管道。这有点复杂,所以我实际上测试了一些。每一项单独加起来是64,所有项加起来是256。

inline int pop4(unsigned long x, unsigned long y, 
                unsigned long u, unsigned long v)
{
  enum { m1 = 0x5555555555555555, 
         m2 = 0x3333333333333333, 
         m3 = 0x0F0F0F0F0F0F0F0F, 
         m4 = 0x000000FF000000FF };

    x = x - ((x >> 1) & m1);
    y = y - ((y >> 1) & m1);
    u = u - ((u >> 1) & m1);
    v = v - ((v >> 1) & m1);
    x = (x & m2) + ((x >> 2) & m2);
    y = (y & m2) + ((y >> 2) & m2);
    u = (u & m2) + ((u >> 2) & m2);
    v = (v & m2) + ((v >> 2) & m2);
    x = x + y; 
    u = u + v; 
    x = (x & m3) + ((x >> 4) & m3);
    u = (u & m3) + ((u >> 4) & m3);
    x = x + u; 
    x = x + (x >> 8);
    x = x + (x >> 16);
    x = x & m4; 
    x = x + (x >> 32);
    return x & 0x000001FF;
}

我兴奋了一会儿,但结果是gcc在-O3上玩内联的把戏,尽管我在一些测试中没有使用内联关键字。当我让gcc玩把戏时,对pop4()的十亿次调用需要12.56 gigacycles,但我确定它是将参数折叠为常量表达式。更实际的数字似乎是19.6gc,以实现30%的加速。我的测试循环现在看起来像这样,确保每个参数足够不同,以阻止gcc耍花招。

   hitime b4 = rdtsc(); 
   for (unsigned long i = 10L * 1000*1000*1000; i < 11L * 1000*1000*1000; ++i) 
      sum += pop4 (i,  i^1, ~i, i|1); 
   hitime e4 = rdtsc(); 

2560亿比特加起来在8.17秒内过去了。根据16位表查找的基准测试,3200万比特的计算结果为1.02秒。不能直接比较,因为另一个工作台没有给出时钟速度,但看起来我已经把64KB表版本的鼻涕打出来了,这首先是L1缓存的悲惨使用。

更新:决定做明显的和创建pop6()通过增加四个重复的行。结果是22.8gc, 3840亿比特在9.5秒内加起来。所以还有20%现在是800毫秒,320亿比特。

其他回答

在我看来,“最好”的解决方案是另一个程序员(或者两年后的原始程序员)可以阅读而不需要大量注释的解决方案。你可能想要最快或最聪明的解决方案,有些人已经提供了,但我更喜欢可读性而不是聪明。

unsigned int bitCount (unsigned int value) {
    unsigned int count = 0;
    while (value > 0) {           // until all bits are zero
        if ((value & 1) == 1)     // check lower bit
            count++;
        value >>= 1;              // shift bits, removing lower bit
    }
    return count;
}

如果你想要更快的速度(并且假设你很好地记录了它,以帮助你的继任者),你可以使用表格查找:

// Lookup table for fast calculation of bits set in 8-bit unsigned char.

static unsigned char oneBitsInUChar[] = {
//  0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F (<- n)
//  =====================================================
    0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, // 0n
    1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, // 1n
    : : :
    4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, // Fn
};

// Function for fast calculation of bits set in 16-bit unsigned short.

unsigned char oneBitsInUShort (unsigned short x) {
    return oneBitsInUChar [x >>    8]
         + oneBitsInUChar [x &  0xff];
}

// Function for fast calculation of bits set in 32-bit unsigned int.

unsigned char oneBitsInUInt (unsigned int x) {
    return oneBitsInUShort (x >>     16)
         + oneBitsInUShort (x &  0xffff);
}

这些依赖于特定的数据类型大小,所以它们不是那么可移植的。但是,由于许多性能优化是不可移植的,这可能不是一个问题。如果您想要可移植性,我会坚持使用可读的解决方案。

有些语言以一种可以使用有效硬件支持(如果可用的话)的方式可移植地公开操作,而有些语言则希望使用一些不错的库。

例如(从语言表中):

c++有std::bitset<>::count()或c++ 20 std::popcount(T x) Java有Java .lang. integer . bitcount()(也用于Long或BigInteger) c#有system . numbers . bitoperations . popcount () Python有int.bit_count()(从3.10开始)

不过,并不是所有的编译器/库都能在HW支持可用时使用它。(值得注意的是MSVC,即使有选项使std::popcount内联为x86 popcnt,它的std::bitset::count仍然总是使用查找表。这有望在未来的版本中改变。)

当可移植语言没有这种基本的位操作时,还要考虑编译器的内置函数。以GNU C为例:

int __builtin_popcount (unsigned int x);
int __builtin_popcountll (unsigned long long x);

In the worst case (no single-instruction HW support) the compiler will generate a call to a function (which in current GCC uses a shift/and bit-hack like this answer, at least for x86). In the best case the compiler will emit a cpu instruction to do the job. (Just like a * or / operator - GCC will use a hardware multiply or divide instruction if available, otherwise will call a libgcc helper function.) Or even better, if the operand is a compile-time constant after inlining, it can do constant-propagation to get a compile-time-constant popcount result.

GCC内置甚至可以跨多个平台工作。Popcount几乎已经成为x86架构的主流,所以现在开始使用内置是有意义的,这样你就可以重新编译,让它内联硬件指令时,你编译-mpopcnt或包括(例如https://godbolt.org/z/Ma5e5a)。其他架构已经有popcount很多年了,但在x86领域,仍然有一些古老的Core 2和类似的老式AMD cpu在使用。


在x86上,你可以告诉编译器它可以通过-mpopcnt(也可以通过-msse4.2暗示)假设支持popcnt指令。参见GCC x86选项。-march=nehalem -mtune=skylake(或-march=任何您希望您的代码假设和调优的CPU)可能是一个不错的选择。在较旧的CPU上运行生成的二进制文件将导致非法指令错误。

要为构建它们的机器优化二进制文件,请使用-march=native(与gcc、clang或ICC一起使用)。

MSVC为x86的popcnt指令提供了一个内在的特性,但与gcc不同的是,它实际上是硬件指令的一个内在特性,需要硬件支持。


使用std::bitset<>::count()代替内置的

理论上,任何知道如何有效地为目标CPU进行popcount的编译器都应该通过ISO c++ std::bitset<>来公开该功能。实际上,对于某些目标cpu,在某些情况下使用bit-hack AND/shift/ADD可能会更好。

For target architectures where hardware popcount is an optional extension (like x86), not all compilers have a std::bitset that takes advantage of it when available. For example, MSVC has no way to enable popcnt support at compile time, and it's std::bitset<>::count always uses a table lookup, even with /Ox /arch:AVX (which implies SSE4.2, which in turn implies the popcnt feature.) (Update: see below; that does get MSVC's C++20 std::popcount to use x86 popcnt, but still not its bitset<>::count. MSVC could fix that by updating their standard library headers to use std::popcount when available.)

但是,至少您得到了可以在任何地方工作的可移植的东西,并且使用带有正确目标选项的gcc/clang,您可以获得支持它的体系结构的硬件popcount。

#include <bitset>
#include <limits>
#include <type_traits>

template<typename T>
//static inline  // static if you want to compile with -mpopcnt in one compilation unit but not others
typename std::enable_if<std::is_integral<T>::value,  unsigned >::type 
popcount(T x)
{
    static_assert(std::numeric_limits<T>::radix == 2, "non-binary type");

    // sizeof(x)*CHAR_BIT
    constexpr int bitwidth = std::numeric_limits<T>::digits + std::numeric_limits<T>::is_signed;
    // std::bitset constructor was only unsigned long before C++11.  Beware if porting to C++03
    static_assert(bitwidth <= std::numeric_limits<unsigned long long>::digits, "arg too wide for std::bitset() constructor");

    typedef typename std::make_unsigned<T>::type UT;        // probably not needed, bitset width chops after sign-extension

    std::bitset<bitwidth> bs( static_cast<UT>(x) );
    return bs.count();
}

参见Godbolt编译器资源管理器上gcc、clang、icc和MSVC中的asm。

x86-64 gcc -O3 -std=gnu++11 -mpopcnt输出:

unsigned test_short(short a) { return popcount(a); }
    movzx   eax, di      # note zero-extension, not sign-extension
    popcnt  rax, rax
    ret

unsigned test_int(int a) { return popcount(a); }
    mov     eax, edi
    popcnt  rax, rax        # unnecessary 64-bit operand size
    ret

unsigned test_u64(unsigned long long a) { return popcount(a); }
    xor     eax, eax     # gcc avoids false dependencies for Intel CPUs
    popcnt  rax, rdi
    ret

PowerPC64 gcc -O3 -std=gnu++11发出(对于int arg版本):

    rldicl 3,3,0,32     # zero-extend from 32 to 64-bit
    popcntd 3,3         # popcount
    blr

这个源代码不是x86特定的,也不是gnu特定的,只是在gcc/clang/icc下编译得很好,至少在针对x86(包括x86-64)时是这样。

还要注意,对于没有单指令popcount的体系结构,gcc的回退是逐字节表查找。例如,这对ARM来说就不是什么好事。

c++ 20有std::popcount(T)

不幸的是,当前libstdc++头文件用特殊情况定义了它,if(x==0) return 0;在开始时,clang在编译x86时不会优化:

#include <bit>
int bar(unsigned x) {
    return std::popcount(x);
}

clang 11.0.1 -O3 -std=gnu++20 -march=nehalem (https://godbolt.org/z/arMe5a)

# clang 11
    bar(unsigned int):                                # @bar(unsigned int)
        popcnt  eax, edi
        cmove   eax, edi         # redundant: if popcnt result is 0, return the original 0 instead of the popcnt-generated 0...
        ret

但是GCC编译得很好:

# gcc 10
        xor     eax, eax         # break false dependency on Intel SnB-family before Ice Lake.
        popcnt  eax, edi
        ret

即使是MSVC也能很好地使用它,只要你使用-arch:AVX或更高版本(并使用-std:c++latest启用c++ 20)。https://godbolt.org/z/7K4Gef

int bar(unsigned int) PROC                                 ; bar, COMDAT
        popcnt  eax, ecx
        ret     0
int bar(unsigned int) ENDP                                 ; bar

这就是所谓的“汉明权重”,“popcount”或“横向相加”。

一些cpu有单独的内置指令来做这件事,而另一些cpu有并行指令来处理位向量。像x86的popcnt(在支持它的cpu上)这样的指令几乎肯定对单个整数来说是最快的。其他一些架构可能有一个缓慢的指令,实现了一个微编码循环,每个周期测试一个比特(需要引用-硬件popcount通常是快速的,如果它存在的话。)

“最佳”算法实际上取决于你所使用的CPU以及你的使用模式。

Your compiler may know how to do something that's good for the specific CPU you're compiling for, e.g. C++20 std::popcount(), or C++ std::bitset<32>::count(), as a portable way to access builtin / intrinsic functions (see another answer on this question). But your compiler's choice of fallback for target CPUs that don't have hardware popcnt might not be optimal for your use-case. Or your language (e.g. C) might not expose any portable function that could use a CPU-specific popcount when there is one.


不需要(或受益于)任何硬件支持的可移植算法

如果您的CPU有一个很大的缓存,并且您在一个紧密的循环中执行大量这些操作,那么预先填充的表查找方法可以非常快。然而,它可能会因为“缓存丢失”的代价而受到影响,在这种情况下,CPU必须从主存中获取一些表。(分别查找每个字节以保持表小。)如果你想要popcount的连续范围的数字,只有低字节改变的组256个数字,这是非常好的。

如果你知道你的字节大部分是0或1,那么就有针对这些情况的有效算法,例如在循环中使用bithack清除最低的集合,直到它变成0。

我相信一个非常好的通用算法是以下,称为“并行”或“可变精度SWAR算法”。我已经在一个类似C的伪语言中表达了这一点,你可能需要调整它以适用于特定的语言(例如使用uint32_t for c++和>>> in Java):

GCC10和clang 10.0可以识别这种模式/习惯用法,并在可用时将其编译为硬件popcnt或等效指令,为您提供两全其美的服务。(https://godbolt.org/z/qGdh1dvKK)

int numberOfSetBits(uint32_t i)
{
     // Java: use int, and use >>> instead of >>. Or use Integer.bitCount()
     // C or C++: use uint32_t
     i = i - ((i >> 1) & 0x55555555);        // add pairs of bits
     i = (i & 0x33333333) + ((i >> 2) & 0x33333333);  // quads
     i = (i + (i >> 4)) & 0x0F0F0F0F;        // groups of 8
     return (i * 0x01010101) >> 24;          // horizontal sum of bytes
}

对于JavaScript:强制为整数|0的性能:更改第一行为i = (i|0) - ((i >> 1) & 0x55555555);

这是所有讨论过的算法中最糟糕的行为,因此可以有效地处理您抛出的任何使用模式或值。(它的性能不依赖于普通cpu的数据,在普通cpu中,包括乘法在内的所有整数操作都是常量时间。“简单”输入不会让它变得更快,但它仍然相当不错。)

引用:

https://graphics.stanford.edu/~seander/bithacks.html https://catonmat.net/low-level-bit-hacks用于bithack基础知识,例如如何减去1翻转连续的零。 https://en.wikipedia.org/wiki/Hamming_weight http://gurmeet.net/puzzles/fast-bit-counting-routines/ http://aggregate.ee.engr.uky.edu/MAGIC/人口% 20计数% 20(% 20计数)


这个SWAR bithack如何工作:

i = i - ((i >> 1) & 0x55555555);

第一步是屏蔽的优化版本,以隔离奇数/偶数位,移动以对齐它们,并添加。这有效地在2位累加器(SWAR = SIMD Within A Register)中进行16个独立的加法。比如(i & 0x55555555) + ((i>>1) & 0x55555555)。

下一步是取这16个2位累加器中的奇/偶8个,然后再次相加,得到8个4位累加器。我…这次不可能进行优化,所以它只是在移动之前/之后进行遮罩。使用相同的0x33…两次都是常量,而不是0xccc…在为需要单独在寄存器中构造32位常量的isa编译时,在移位之前进行转换是一件好事。

(i + (i >> 4)) & 0x0F0F0F0F的最后一个移位和添加步骤将扩大为4个8位累加器。它在加后而不是加前进行掩码,因为如果设置了所有对应的4位输入位,则任何4位累加器中的最大值为4。4+4 = 8仍然适合4位,所以在I + (I >> 4)中,啃食元素之间的进位是不可能的。

到目前为止,这只是使用SWAR技术和一些聪明的优化的相当普通的SIMD。继续相同的模式2步可以扩大到2x 16位,然后1x 32位计数。但在硬件快速相乘的机器上,有一种更有效的方法:

一旦我们有足够少的“元素”,一个神奇常数的乘法可以把所有的元素加起来变成最上面的元素。在本例中是字节元素。乘法是通过左移和加法完成的,因此x * 0x01010101的乘法得到x + (x<<8) + (x<<16) + (x<<24)。我们的8位元素足够宽(并且包含足够小的计数),因此不会产生进位到前8位。

它的64位版本可以使用0x0101010101010101乘数在64位整数中处理8x 8位元素,并使用>>56提取高字节。所以它不需要任何额外的步骤,只是更大的常数。这是当硬件popcnt指令未启用时,GCC在x86系统上对__builtin_popcountll使用的方法。如果您可以为此使用内置或内在函数,那么这样做可以让编译器有机会进行特定于目标的优化。


对于更宽的向量具有完整的SIMD(例如计算整个数组)

这种逐位swar算法可以在多个向量元素中同时进行并行运算,而不是在单个整数寄存器中进行并行运算,从而在具有SIMD但没有可用popcount指令的cpu上实现加速。(例如x86-64代码必须在任何CPU上运行,而不仅仅是Nehalem或更高版本。)

然而,对popcount使用矢量指令的最佳方法通常是使用变量-shuffle并行地对每个字节每次4位进行表查找。(4位索引保存在向量寄存器中的16项表)。

在Intel cpu上,硬件64位popcnt指令的性能比SSSE3 PSHUFB位并行实现的性能好2倍,但前提是编译器的性能恰到好处。否则,上交所可能会大幅领先。较新的编译器版本意识到popcnt对Intel的错误依赖问题。

https://github.com/WojciechMula/sse-popcount state-of-the-art x86 SIMD popcount for SSSE3, AVX2, AVX512BW, AVX512VBMI, or AVX512 VPOPCNT. Using Harley-Seal across vectors to defer popcount within an element. (Also ARM NEON) Counting 1 bits (population count) on large data using AVX-512 or AVX-2 related: https://github.com/mklarqvist/positional-popcount - separate counts for each bit-position of multiple 8, 16, 32, or 64-bit integers. (Again, x86 SIMD including AVX-512 which is really good at this, with vpternlogd making Harley-Seal very good.)

几个悬而未决的问题:-

如果这个数是负的呢? 如果这个数字是1024,那么“迭代除以2”方法将迭代10次。

我们可以修改算法以支持负数:-

count = 0
while n != 0
if ((n % 2) == 1 || (n % 2) == -1
    count += 1
  n /= 2  
return count

现在为了克服第二个问题,我们可以编写这样的算法:-

int bit_count(int num)
{
    int count=0;
    while(num)
    {
        num=(num)&(num-1);
        count++;
    }
    return count;
}

完整参考请参见:

http://goursaha.freeoda.com/Miscellaneous/IntegerBitCount.html

天真的解决方案

时间复杂度为O(no。n的比特数)

int countSet(unsigned int n)
{
    int res=0;
    while(n!=0){
      res += (n&1);
      n >>= 1;      // logical right shift, like C unsigned or Java >>>
    }
   return res;
}

Brian Kerningam的算法

时间复杂度为O(n中设置位的个数)

int countSet(unsigned int n)
{
  int res=0;
  while(n != 0)
  {
    n = (n & (n-1));
    res++;
  }
  return res;
} 

32位数字的查找表方法-在这种方法中,我们将32位数字分解为4个8位数字的块

时间复杂度为O(1)

static unsigned char table[256]; /* the table size is 256,
                        the number of values i&0xFF (8 bits) can have */

void initialize() //holds the number of set bits from 0 to 255
{
  table[0]=0;
  for(unsigned int i=1;i<256;i++)
     table[i]=(i&1)+table[i>>1];
}

int countSet(unsigned int n)
{
  // 0xff is hexadecimal representation of 8 set bits.
  int res=table[n & 0xff];
  n=n>>8;
  res=res+ table[n & 0xff];
  n=n>>8;
  res=res+ table[n & 0xff];
  n=n>>8;
  res=res+ table[n & 0xff];
  return res;
}