代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
当前回答
我觉得很无聊,于是对三种方法进行了十亿次迭代。编译器是gcc -O3。CPU就是第一代Macbook Pro里装的东西。
最快的是3.7秒:
static unsigned char wordbits[65536] = { bitcounts of ints between 0 and 65535 };
static int popcount( unsigned int i )
{
return( wordbits[i&0xFFFF] + wordbits[i>>16] );
}
第二名是相同的代码,但查找的是4个字节而不是2个半字。这花了大约5.5秒。
第三名是“横向加法”法,用时8.6秒。
第四名是GCC的__builtin_popcount(),仅为11秒。
一次一个比特的计数方法要慢得多,我厌倦了等待它完成。
因此,如果您最关心的是性能,那么请使用第一种方法。如果您关心它,但又不想在上面花费64Kb的RAM,那么可以使用第二种方法。否则,请使用可读的(但速度较慢)一次一位的方法。
很难想象在什么情况下你会想要使用比特旋转方法。
编辑:这里也有类似的结果。
其他回答
对于JavaScript,你可以使用一个查找表来计算一个32位值的设置位的数量(这段代码可以很容易地翻译成C语言)。此外,添加了8位和16位版本,以供通过网络搜索查找的人使用。
const COUNT_BITS_TABLE = makeLookupTable() function makeLookupTable() { const table = new Uint8Array(256) for (let i = 0; i < 256; i++) { table[i] = (i & 1) + table[(i / 2) | 0]; } return table } function countOneBits32(n) { return COUNT_BITS_TABLE[n & 0xff] + COUNT_BITS_TABLE[(n >> 8) & 0xff] + COUNT_BITS_TABLE[(n >> 16) & 0xff] + COUNT_BITS_TABLE[(n >> 24) & 0xff]; } function countOneBits16(n) { return COUNT_BITS_TABLE[n & 0xff] + COUNT_BITS_TABLE[(n >> 8) & 0xff] } function countOneBits8(n) { return COUNT_BITS_TABLE[n & 0xff] } console.log('countOneBits32', countOneBits32(0b10101010000000001010101000000000)) console.log('countOneBits32', countOneBits32(0b10101011110000001010101000000000)) console.log('countOneBits16', countOneBits16(0b1010101000000000)) console.log('countOneBits8', countOneBits8(0b10000010))
一个简单的方法,应该工作得很好少量的比特它像这样(在这个例子中的4位):
(i & 1) + (i & 2)/2 + (i & 4)/4 + (i & 8)/8
对于少量的比特,其他人会推荐这种简单的解决方案吗?
为什么不迭代地除以2呢?
count = 0 while n > 0 if (n % 2) == 1 count += 1 n /= 2
我同意这不是最快的,但是“最好”这个词有点含糊不清。我认为“最好”应该有一个清晰的元素
Python的解决方案:
def hammingWeight(n: int) -> int:
sums = 0
while (n!=0):
sums+=1
n = n &(n-1)
return sums
在二进制表示中,n中最不有效的1位总是对应n - 1中的0位。因此,对n和n - 1这两个数进行and运算总是将n中最不有效的1位翻转为0,并保持所有其他位相同。
你可以这样做:
int countSetBits(int n)
{
n=((n&0xAAAAAAAA)>>1) + (n&0x55555555);
n=((n&0xCCCCCCCC)>>2) + (n&0x33333333);
n=((n&0xF0F0F0F0)>>4) + (n&0x0F0F0F0F);
n=((n&0xFF00FF00)>>8) + (n&0x00FF00FF);
return n;
}
int main()
{
int n=10;
printf("Number of set bits: %d",countSetBits(n));
return 0;
}
海王: http://ideone.com/JhwcX
工作原理如下:
首先,所有的偶数位都向右移动,并与奇数位相加,以计算两组位的数量。 然后我们两人一组,然后四个人,以此类推。