代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
当前回答
几个悬而未决的问题:-
如果这个数是负的呢? 如果这个数字是1024,那么“迭代除以2”方法将迭代10次。
我们可以修改算法以支持负数:-
count = 0
while n != 0
if ((n % 2) == 1 || (n % 2) == -1
count += 1
n /= 2
return count
现在为了克服第二个问题,我们可以编写这样的算法:-
int bit_count(int num)
{
int count=0;
while(num)
{
num=(num)&(num-1);
count++;
}
return count;
}
完整参考请参见:
http://goursaha.freeoda.com/Miscellaneous/IntegerBitCount.html
其他回答
几个悬而未决的问题:-
如果这个数是负的呢? 如果这个数字是1024,那么“迭代除以2”方法将迭代10次。
我们可以修改算法以支持负数:-
count = 0
while n != 0
if ((n % 2) == 1 || (n % 2) == -1
count += 1
n /= 2
return count
现在为了克服第二个问题,我们可以编写这样的算法:-
int bit_count(int num)
{
int count=0;
while(num)
{
num=(num)&(num-1);
count++;
}
return count;
}
完整参考请参见:
http://goursaha.freeoda.com/Miscellaneous/IntegerBitCount.html
大约在1990年,我为RISC机器编写了一个快速比特计数宏。它不使用高级算术(乘法,除法,%),内存提取(太慢),分支(太慢),但它确实假设CPU有一个32位的桶移位器(换句话说,>> 1和>> 32占用相同的周期)。它假定小常数(如6、12、24)加载到寄存器中不需要花费任何代价,或者存储在临时变量中并反复重用。
在这些假设下,在大多数RISC机器上,它在大约16个周期/指令中计算32位。注意,15条指令/周期接近于周期或指令数量的下界,因为似乎至少需要3条指令(掩码、移位、运算符)才能将加数的数量减半,因此log_2(32) = 5,5 x 3 = 15条指令是准下界。
#define BitCount(X,Y) \
Y = X - ((X >> 1) & 033333333333) - ((X >> 2) & 011111111111); \
Y = ((Y + (Y >> 3)) & 030707070707); \
Y = (Y + (Y >> 6)); \
Y = (Y + (Y >> 12) + (Y >> 24)) & 077;
这是第一步也是最复杂的一步:
input output
AB CD Note
00 00 = AB
01 01 = AB
10 01 = AB - (A >> 1) & 0x1
11 10 = AB - (A >> 1) & 0x1
所以如果我取上面的第一列(A),右移1位,然后从AB减去它,我就得到了输出(CD)。扩展到3位类似;如果你愿意,你可以用一个8行布尔表来检查它。
不吉利
有些语言以一种可以使用有效硬件支持(如果可用的话)的方式可移植地公开操作,而有些语言则希望使用一些不错的库。
例如(从语言表中):
c++有std::bitset<>::count()或c++ 20 std::popcount(T x) Java有Java .lang. integer . bitcount()(也用于Long或BigInteger) c#有system . numbers . bitoperations . popcount () Python有int.bit_count()(从3.10开始)
不过,并不是所有的编译器/库都能在HW支持可用时使用它。(值得注意的是MSVC,即使有选项使std::popcount内联为x86 popcnt,它的std::bitset::count仍然总是使用查找表。这有望在未来的版本中改变。)
当可移植语言没有这种基本的位操作时,还要考虑编译器的内置函数。以GNU C为例:
int __builtin_popcount (unsigned int x);
int __builtin_popcountll (unsigned long long x);
In the worst case (no single-instruction HW support) the compiler will generate a call to a function (which in current GCC uses a shift/and bit-hack like this answer, at least for x86). In the best case the compiler will emit a cpu instruction to do the job. (Just like a * or / operator - GCC will use a hardware multiply or divide instruction if available, otherwise will call a libgcc helper function.) Or even better, if the operand is a compile-time constant after inlining, it can do constant-propagation to get a compile-time-constant popcount result.
GCC内置甚至可以跨多个平台工作。Popcount几乎已经成为x86架构的主流,所以现在开始使用内置是有意义的,这样你就可以重新编译,让它内联硬件指令时,你编译-mpopcnt或包括(例如https://godbolt.org/z/Ma5e5a)。其他架构已经有popcount很多年了,但在x86领域,仍然有一些古老的Core 2和类似的老式AMD cpu在使用。
在x86上,你可以告诉编译器它可以通过-mpopcnt(也可以通过-msse4.2暗示)假设支持popcnt指令。参见GCC x86选项。-march=nehalem -mtune=skylake(或-march=任何您希望您的代码假设和调优的CPU)可能是一个不错的选择。在较旧的CPU上运行生成的二进制文件将导致非法指令错误。
要为构建它们的机器优化二进制文件,请使用-march=native(与gcc、clang或ICC一起使用)。
MSVC为x86的popcnt指令提供了一个内在的特性,但与gcc不同的是,它实际上是硬件指令的一个内在特性,需要硬件支持。
使用std::bitset<>::count()代替内置的
理论上,任何知道如何有效地为目标CPU进行popcount的编译器都应该通过ISO c++ std::bitset<>来公开该功能。实际上,对于某些目标cpu,在某些情况下使用bit-hack AND/shift/ADD可能会更好。
For target architectures where hardware popcount is an optional extension (like x86), not all compilers have a std::bitset that takes advantage of it when available. For example, MSVC has no way to enable popcnt support at compile time, and it's std::bitset<>::count always uses a table lookup, even with /Ox /arch:AVX (which implies SSE4.2, which in turn implies the popcnt feature.) (Update: see below; that does get MSVC's C++20 std::popcount to use x86 popcnt, but still not its bitset<>::count. MSVC could fix that by updating their standard library headers to use std::popcount when available.)
但是,至少您得到了可以在任何地方工作的可移植的东西,并且使用带有正确目标选项的gcc/clang,您可以获得支持它的体系结构的硬件popcount。
#include <bitset>
#include <limits>
#include <type_traits>
template<typename T>
//static inline // static if you want to compile with -mpopcnt in one compilation unit but not others
typename std::enable_if<std::is_integral<T>::value, unsigned >::type
popcount(T x)
{
static_assert(std::numeric_limits<T>::radix == 2, "non-binary type");
// sizeof(x)*CHAR_BIT
constexpr int bitwidth = std::numeric_limits<T>::digits + std::numeric_limits<T>::is_signed;
// std::bitset constructor was only unsigned long before C++11. Beware if porting to C++03
static_assert(bitwidth <= std::numeric_limits<unsigned long long>::digits, "arg too wide for std::bitset() constructor");
typedef typename std::make_unsigned<T>::type UT; // probably not needed, bitset width chops after sign-extension
std::bitset<bitwidth> bs( static_cast<UT>(x) );
return bs.count();
}
参见Godbolt编译器资源管理器上gcc、clang、icc和MSVC中的asm。
x86-64 gcc -O3 -std=gnu++11 -mpopcnt输出:
unsigned test_short(short a) { return popcount(a); }
movzx eax, di # note zero-extension, not sign-extension
popcnt rax, rax
ret
unsigned test_int(int a) { return popcount(a); }
mov eax, edi
popcnt rax, rax # unnecessary 64-bit operand size
ret
unsigned test_u64(unsigned long long a) { return popcount(a); }
xor eax, eax # gcc avoids false dependencies for Intel CPUs
popcnt rax, rdi
ret
PowerPC64 gcc -O3 -std=gnu++11发出(对于int arg版本):
rldicl 3,3,0,32 # zero-extend from 32 to 64-bit
popcntd 3,3 # popcount
blr
这个源代码不是x86特定的,也不是gnu特定的,只是在gcc/clang/icc下编译得很好,至少在针对x86(包括x86-64)时是这样。
还要注意,对于没有单指令popcount的体系结构,gcc的回退是逐字节表查找。例如,这对ARM来说就不是什么好事。
c++ 20有std::popcount(T)
不幸的是,当前libstdc++头文件用特殊情况定义了它,if(x==0) return 0;在开始时,clang在编译x86时不会优化:
#include <bit>
int bar(unsigned x) {
return std::popcount(x);
}
clang 11.0.1 -O3 -std=gnu++20 -march=nehalem (https://godbolt.org/z/arMe5a)
# clang 11
bar(unsigned int): # @bar(unsigned int)
popcnt eax, edi
cmove eax, edi # redundant: if popcnt result is 0, return the original 0 instead of the popcnt-generated 0...
ret
但是GCC编译得很好:
# gcc 10
xor eax, eax # break false dependency on Intel SnB-family before Ice Lake.
popcnt eax, edi
ret
即使是MSVC也能很好地使用它,只要你使用-arch:AVX或更高版本(并使用-std:c++latest启用c++ 20)。https://godbolt.org/z/7K4Gef
int bar(unsigned int) PROC ; bar, COMDAT
popcnt eax, ecx
ret 0
int bar(unsigned int) ENDP ; bar
对于那些想要在c++ 11中为任何无符号整数类型作为consexpr函数的人(tacklelib/include/tacklelib/utility/math.hpp):
#include <stdint.h>
#include <limits>
#include <type_traits>
const constexpr uint32_t uint32_max = (std::numeric_limits<uint32_t>::max)();
namespace detail
{
template <typename T>
inline constexpr T _count_bits_0(const T & v)
{
return v - ((v >> 1) & 0x55555555);
}
template <typename T>
inline constexpr T _count_bits_1(const T & v)
{
return (v & 0x33333333) + ((v >> 2) & 0x33333333);
}
template <typename T>
inline constexpr T _count_bits_2(const T & v)
{
return (v + (v >> 4)) & 0x0F0F0F0F;
}
template <typename T>
inline constexpr T _count_bits_3(const T & v)
{
return v + (v >> 8);
}
template <typename T>
inline constexpr T _count_bits_4(const T & v)
{
return v + (v >> 16);
}
template <typename T>
inline constexpr T _count_bits_5(const T & v)
{
return v & 0x0000003F;
}
template <typename T, bool greater_than_uint32>
struct _impl
{
static inline constexpr T _count_bits_with_shift(const T & v)
{
return
detail::_count_bits_5(
detail::_count_bits_4(
detail::_count_bits_3(
detail::_count_bits_2(
detail::_count_bits_1(
detail::_count_bits_0(v)))))) + count_bits(v >> 32);
}
};
template <typename T>
struct _impl<T, false>
{
static inline constexpr T _count_bits_with_shift(const T & v)
{
return 0;
}
};
}
template <typename T>
inline constexpr T count_bits(const T & v)
{
static_assert(std::is_integral<T>::value, "type T must be an integer");
static_assert(!std::is_signed<T>::value, "type T must be not signed");
return uint32_max >= v ?
detail::_count_bits_5(
detail::_count_bits_4(
detail::_count_bits_3(
detail::_count_bits_2(
detail::_count_bits_1(
detail::_count_bits_0(v)))))) :
detail::_impl<T, sizeof(uint32_t) < sizeof(v)>::_count_bits_with_shift(v);
}
谷歌测试库中的附加测试:
#include <stdlib.h>
#include <time.h>
namespace {
template <typename T>
inline uint32_t _test_count_bits(const T & v)
{
uint32_t count = 0;
T n = v;
while (n > 0) {
if (n % 2) {
count += 1;
}
n /= 2;
}
return count;
}
}
TEST(FunctionsTest, random_count_bits_uint32_100K)
{
srand(uint_t(time(NULL)));
for (uint32_t i = 0; i < 100000; i++) {
const uint32_t r = uint32_t(rand()) + (uint32_t(rand()) << 16);
ASSERT_EQ(_test_count_bits(r), count_bits(r));
}
}
TEST(FunctionsTest, random_count_bits_uint64_100K)
{
srand(uint_t(time(NULL)));
for (uint32_t i = 0; i < 100000; i++) {
const uint64_t r = uint64_t(rand()) + (uint64_t(rand()) << 16) + (uint64_t(rand()) << 32) + (uint64_t(rand()) << 48);
ASSERT_EQ(_test_count_bits(r), count_bits(r));
}
}
你可以这样做:
int countSetBits(int n)
{
n=((n&0xAAAAAAAA)>>1) + (n&0x55555555);
n=((n&0xCCCCCCCC)>>2) + (n&0x33333333);
n=((n&0xF0F0F0F0)>>4) + (n&0x0F0F0F0F);
n=((n&0xFF00FF00)>>8) + (n&0x00FF00FF);
return n;
}
int main()
{
int n=10;
printf("Number of set bits: %d",countSetBits(n));
return 0;
}
海王: http://ideone.com/JhwcX
工作原理如下:
首先,所有的偶数位都向右移动,并与奇数位相加,以计算两组位的数量。 然后我们两人一组,然后四个人,以此类推。