代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
当前回答
有许多算法来计数设置位;但是我认为最好的一个是更快的一个! 您可以在本页查看详细信息:
Bit Twiddling Hacks
我建议这样做:
使用64位指令计数在14,24或32位字中设置的位
unsigned int v; // count the number of bits set in v
unsigned int c; // c accumulates the total bits set in v
// option 1, for at most 14-bit values in v:
c = (v * 0x200040008001ULL & 0x111111111111111ULL) % 0xf;
// option 2, for at most 24-bit values in v:
c = ((v & 0xfff) * 0x1001001001001ULL & 0x84210842108421ULL) % 0x1f;
c += (((v & 0xfff000) >> 12) * 0x1001001001001ULL & 0x84210842108421ULL)
% 0x1f;
// option 3, for at most 32-bit values in v:
c = ((v & 0xfff) * 0x1001001001001ULL & 0x84210842108421ULL) % 0x1f;
c += (((v & 0xfff000) >> 12) * 0x1001001001001ULL & 0x84210842108421ULL) %
0x1f;
c += ((v >> 24) * 0x1001001001001ULL & 0x84210842108421ULL) % 0x1f;
这种方法需要64位CPU和快速模除法来提高效率。第一个选项只需要3个操作;第二种选择需要10;第三种选择需要15分钟。
其他回答
在我看来,“最好”的解决方案是另一个程序员(或者两年后的原始程序员)可以阅读而不需要大量注释的解决方案。你可能想要最快或最聪明的解决方案,有些人已经提供了,但我更喜欢可读性而不是聪明。
unsigned int bitCount (unsigned int value) {
unsigned int count = 0;
while (value > 0) { // until all bits are zero
if ((value & 1) == 1) // check lower bit
count++;
value >>= 1; // shift bits, removing lower bit
}
return count;
}
如果你想要更快的速度(并且假设你很好地记录了它,以帮助你的继任者),你可以使用表格查找:
// Lookup table for fast calculation of bits set in 8-bit unsigned char.
static unsigned char oneBitsInUChar[] = {
// 0 1 2 3 4 5 6 7 8 9 A B C D E F (<- n)
// =====================================================
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, // 0n
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, // 1n
: : :
4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, // Fn
};
// Function for fast calculation of bits set in 16-bit unsigned short.
unsigned char oneBitsInUShort (unsigned short x) {
return oneBitsInUChar [x >> 8]
+ oneBitsInUChar [x & 0xff];
}
// Function for fast calculation of bits set in 32-bit unsigned int.
unsigned char oneBitsInUInt (unsigned int x) {
return oneBitsInUShort (x >> 16)
+ oneBitsInUShort (x & 0xffff);
}
这些依赖于特定的数据类型大小,所以它们不是那么可移植的。但是,由于许多性能优化是不可移植的,这可能不是一个问题。如果您想要可移植性,我会坚持使用可读的解决方案。
另一个汉明权重算法,如果你使用的是BMI2 CPU:
the_weight = __tzcnt_u64(~_pext_u64(data[i], data[i]));
以二进制表示计数集位(N):
伪代码,
设置counter = 0。 重复计数,直到N不为零。 检查最后一点。 如果最后一位= 1,则递增计数器 丢弃N的最后一位。
现在让我们用c++编写代码
int countSetBits(unsigned int n){
int count = 0;
while(n!=0){
count += n&1;
n = n >>1;
}
return count;
}
我们用这个函数。
int main(){
int x = 5;
cout<<countSetBits(x);
return 0;
}
输出:2
因为5有2位二进制表示(101)。
您可以在这里运行代码。
将整数转换为二进制字符串并计数。
PHP解决方案:
substr_count(decbin($integer), '1');
我发现了一个在数组中使用SIMD指令(SSSE3和AVX2)的位计数实现。它的性能比使用__popcnt64内禀函数要好2-2.5倍。
SSSE3版:
#include <smmintrin.h>
#include <stdint.h>
const __m128i Z = _mm_set1_epi8(0x0);
const __m128i F = _mm_set1_epi8(0xF);
//Vector with pre-calculated bit count:
const __m128i T = _mm_setr_epi8(0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4);
uint64_t BitCount(const uint8_t * src, size_t size)
{
__m128i _sum = _mm128_setzero_si128();
for (size_t i = 0; i < size; i += 16)
{
//load 16-byte vector
__m128i _src = _mm_loadu_si128((__m128i*)(src + i));
//get low 4 bit for every byte in vector
__m128i lo = _mm_and_si128(_src, F);
//sum precalculated value from T
_sum = _mm_add_epi64(_sum, _mm_sad_epu8(Z, _mm_shuffle_epi8(T, lo)));
//get high 4 bit for every byte in vector
__m128i hi = _mm_and_si128(_mm_srli_epi16(_src, 4), F);
//sum precalculated value from T
_sum = _mm_add_epi64(_sum, _mm_sad_epu8(Z, _mm_shuffle_epi8(T, hi)));
}
uint64_t sum[2];
_mm_storeu_si128((__m128i*)sum, _sum);
return sum[0] + sum[1];
}
AVX2 版本:
#include <immintrin.h>
#include <stdint.h>
const __m256i Z = _mm256_set1_epi8(0x0);
const __m256i F = _mm256_set1_epi8(0xF);
//Vector with pre-calculated bit count:
const __m256i T = _mm256_setr_epi8(0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4);
uint64_t BitCount(const uint8_t * src, size_t size)
{
__m256i _sum = _mm256_setzero_si256();
for (size_t i = 0; i < size; i += 32)
{
//load 32-byte vector
__m256i _src = _mm256_loadu_si256((__m256i*)(src + i));
//get low 4 bit for every byte in vector
__m256i lo = _mm256_and_si256(_src, F);
//sum precalculated value from T
_sum = _mm256_add_epi64(_sum, _mm256_sad_epu8(Z, _mm256_shuffle_epi8(T, lo)));
//get high 4 bit for every byte in vector
__m256i hi = _mm256_and_si256(_mm256_srli_epi16(_src, 4), F);
//sum precalculated value from T
_sum = _mm256_add_epi64(_sum, _mm256_sad_epu8(Z, _mm256_shuffle_epi8(T, hi)));
}
uint64_t sum[4];
_mm256_storeu_si256((__m256i*)sum, _sum);
return sum[0] + sum[1] + sum[2] + sum[3];
}