代表数字7的8位像这样:

00000111

设置了三个比特。

确定32位整数中设置位数的算法是什么?


当前回答

以二进制表示计数集位(N):

伪代码,

设置counter = 0。 重复计数,直到N不为零。 检查最后一点。 如果最后一位= 1,则递增计数器 丢弃N的最后一位。

现在让我们用c++编写代码

int countSetBits(unsigned int n){

int count = 0;

while(n!=0){

    count += n&1;

    n = n >>1;
}

  return count;

}

我们用这个函数。

int main(){

 int x = 5;
 cout<<countSetBits(x);

 return 0;
}

输出:2

因为5有2位二进制表示(101)。

您可以在这里运行代码。

其他回答

这不是最快或最好的解决方案,但我以自己的方式发现了同样的问题,我开始反复思考。最后我意识到它可以这样做,如果你从数学方面得到这个问题,画一个图,然后你发现它是一个有周期部分的函数,然后你意识到周期之间的差异……所以你看:

unsigned int f(unsigned int x)
{
    switch (x) {
        case 0:
            return 0;
        case 1:
            return 1;
        case 2:
            return 1;
        case 3:
            return 2;
        default:
            return f(x/4) + f(x%4);
    }
}

我觉得很无聊,于是对三种方法进行了十亿次迭代。编译器是gcc -O3。CPU就是第一代Macbook Pro里装的东西。

最快的是3.7秒:

static unsigned char wordbits[65536] = { bitcounts of ints between 0 and 65535 };
static int popcount( unsigned int i )
{
    return( wordbits[i&0xFFFF] + wordbits[i>>16] );
}

第二名是相同的代码,但查找的是4个字节而不是2个半字。这花了大约5.5秒。

第三名是“横向加法”法,用时8.6秒。

第四名是GCC的__builtin_popcount(),仅为11秒。

一次一个比特的计数方法要慢得多,我厌倦了等待它完成。

因此,如果您最关心的是性能,那么请使用第一种方法。如果您关心它,但又不想在上面花费64Kb的RAM,那么可以使用第二种方法。否则,请使用可读的(但速度较慢)一次一位的方法。

很难想象在什么情况下你会想要使用比特旋转方法。

编辑:这里也有类似的结果。

我在任何地方都没见过这种方法:

int nbits(unsigned char v) {
    return ((((v - ((v >> 1) & 0x55)) * 0x1010101) & 0x30c00c03) * 0x10040041) >> 0x1c;
}

它每字节工作一次,所以对于一个32位整数,它必须被调用四次。它源于横向加法,但它使用两个32位乘法将指令数量减少到只有7条。

大多数当前的C编译器将使用SIMD (SSE2)指令优化这个函数,当请求的数量是4的倍数时,它变得非常有竞争力。它是可移植的,可以定义为宏或内联函数,并且不需要数据表。

这种方法可以扩展为一次处理16位,使用64位乘法。但是,当所有16位都被设置时,它会失败,返回0,所以它只能在0xFFFF输入值不存在时使用。由于64位操作,它也比较慢,并且没有很好地优化。

我使用下面的函数。我还没有检查基准测试,但它是有效的。

int msb(int num)
{
    int m = 0;
    for (int i = 16; i > 0; i = i>>1)
    {
        // debug(i, num, m);
        if(num>>i)
        {
            m += i;
            num>>=i;
        }
    }
    return m;
}

我给出了两个算法来回答这个问题,

package countSetBitsInAnInteger;

import java.util.Scanner;

public class UsingLoop {

    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        try {
            System.out.println("Enter a integer number to check for set bits in it");
            int n = in.nextInt();
            System.out.println("Using while loop, we get the number of set bits as: " + usingLoop(n));
            System.out.println("Using Brain Kernighan's Algorithm, we get the number of set bits as: " + usingBrainKernighan(n));
            System.out.println("Using ");
        }
        finally {
            in.close();
        }
    }

    private static int usingBrainKernighan(int n) {
        int count = 0;
        while(n > 0) {
            n& = (n-1);
            count++;
        }
        return count;
    }

    /*
        Analysis:
            Time complexity = O(lgn)
            Space complexity = O(1)
    */

    private static int usingLoop(int n) {
        int count = 0;
        for(int i=0; i<32; i++) {
            if((n&(1 << i)) != 0)
                count++;
        }
        return count;
    }

    /*
        Analysis:
            Time Complexity = O(32) // Maybe the complexity is O(lgn)
            Space Complexity = O(1)
    */
}