代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
当前回答
以二进制表示计数集位(N):
伪代码,
设置counter = 0。 重复计数,直到N不为零。 检查最后一点。 如果最后一位= 1,则递增计数器 丢弃N的最后一位。
现在让我们用c++编写代码
int countSetBits(unsigned int n){
int count = 0;
while(n!=0){
count += n&1;
n = n >>1;
}
return count;
}
我们用这个函数。
int main(){
int x = 5;
cout<<countSetBits(x);
return 0;
}
输出:2
因为5有2位二进制表示(101)。
您可以在这里运行代码。
其他回答
对于那些想要在c++ 11中为任何无符号整数类型作为consexpr函数的人(tacklelib/include/tacklelib/utility/math.hpp):
#include <stdint.h>
#include <limits>
#include <type_traits>
const constexpr uint32_t uint32_max = (std::numeric_limits<uint32_t>::max)();
namespace detail
{
template <typename T>
inline constexpr T _count_bits_0(const T & v)
{
return v - ((v >> 1) & 0x55555555);
}
template <typename T>
inline constexpr T _count_bits_1(const T & v)
{
return (v & 0x33333333) + ((v >> 2) & 0x33333333);
}
template <typename T>
inline constexpr T _count_bits_2(const T & v)
{
return (v + (v >> 4)) & 0x0F0F0F0F;
}
template <typename T>
inline constexpr T _count_bits_3(const T & v)
{
return v + (v >> 8);
}
template <typename T>
inline constexpr T _count_bits_4(const T & v)
{
return v + (v >> 16);
}
template <typename T>
inline constexpr T _count_bits_5(const T & v)
{
return v & 0x0000003F;
}
template <typename T, bool greater_than_uint32>
struct _impl
{
static inline constexpr T _count_bits_with_shift(const T & v)
{
return
detail::_count_bits_5(
detail::_count_bits_4(
detail::_count_bits_3(
detail::_count_bits_2(
detail::_count_bits_1(
detail::_count_bits_0(v)))))) + count_bits(v >> 32);
}
};
template <typename T>
struct _impl<T, false>
{
static inline constexpr T _count_bits_with_shift(const T & v)
{
return 0;
}
};
}
template <typename T>
inline constexpr T count_bits(const T & v)
{
static_assert(std::is_integral<T>::value, "type T must be an integer");
static_assert(!std::is_signed<T>::value, "type T must be not signed");
return uint32_max >= v ?
detail::_count_bits_5(
detail::_count_bits_4(
detail::_count_bits_3(
detail::_count_bits_2(
detail::_count_bits_1(
detail::_count_bits_0(v)))))) :
detail::_impl<T, sizeof(uint32_t) < sizeof(v)>::_count_bits_with_shift(v);
}
谷歌测试库中的附加测试:
#include <stdlib.h>
#include <time.h>
namespace {
template <typename T>
inline uint32_t _test_count_bits(const T & v)
{
uint32_t count = 0;
T n = v;
while (n > 0) {
if (n % 2) {
count += 1;
}
n /= 2;
}
return count;
}
}
TEST(FunctionsTest, random_count_bits_uint32_100K)
{
srand(uint_t(time(NULL)));
for (uint32_t i = 0; i < 100000; i++) {
const uint32_t r = uint32_t(rand()) + (uint32_t(rand()) << 16);
ASSERT_EQ(_test_count_bits(r), count_bits(r));
}
}
TEST(FunctionsTest, random_count_bits_uint64_100K)
{
srand(uint_t(time(NULL)));
for (uint32_t i = 0; i < 100000; i++) {
const uint64_t r = uint64_t(rand()) + (uint64_t(rand()) << 16) + (uint64_t(rand()) << 32) + (uint64_t(rand()) << 48);
ASSERT_EQ(_test_count_bits(r), count_bits(r));
}
}
这里有一个到目前为止还没有提到的解决方案,使用位字段。下面的程序使用4种不同的方法对100000000个16位整数数组中的设置位进行计数。计时结果在括号中给出(在MacOSX上,使用gcc -O3):
#include <stdio.h>
#include <stdlib.h>
#define LENGTH 100000000
typedef struct {
unsigned char bit0 : 1;
unsigned char bit1 : 1;
unsigned char bit2 : 1;
unsigned char bit3 : 1;
unsigned char bit4 : 1;
unsigned char bit5 : 1;
unsigned char bit6 : 1;
unsigned char bit7 : 1;
} bits;
unsigned char sum_bits(const unsigned char x) {
const bits *b = (const bits*) &x;
return b->bit0 + b->bit1 + b->bit2 + b->bit3 \
+ b->bit4 + b->bit5 + b->bit6 + b->bit7;
}
int NumberOfSetBits(int i) {
i = i - ((i >> 1) & 0x55555555);
i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
return (((i + (i >> 4)) & 0x0F0F0F0F) * 0x01010101) >> 24;
}
#define out(s) \
printf("bits set: %lu\nbits counted: %lu\n", 8*LENGTH*sizeof(short)*3/4, s);
int main(int argc, char **argv) {
unsigned long i, s;
unsigned short *x = malloc(LENGTH*sizeof(short));
unsigned char lut[65536], *p;
unsigned short *ps;
int *pi;
/* set 3/4 of the bits */
for (i=0; i<LENGTH; ++i)
x[i] = 0xFFF0;
/* sum_bits (1.772s) */
for (i=LENGTH*sizeof(short), p=(unsigned char*) x, s=0; i--; s+=sum_bits(*p++));
out(s);
/* NumberOfSetBits (0.404s) */
for (i=LENGTH*sizeof(short)/sizeof(int), pi=(int*)x, s=0; i--; s+=NumberOfSetBits(*pi++));
out(s);
/* populate lookup table */
for (i=0, p=(unsigned char*) &i; i<sizeof(lut); ++i)
lut[i] = sum_bits(p[0]) + sum_bits(p[1]);
/* 256-bytes lookup table (0.317s) */
for (i=LENGTH*sizeof(short), p=(unsigned char*) x, s=0; i--; s+=lut[*p++]);
out(s);
/* 65536-bytes lookup table (0.250s) */
for (i=LENGTH, ps=x, s=0; i--; s+=lut[*ps++]);
out(s);
free(x);
return 0;
}
虽然位域版本非常可读,但计时结果显示它比NumberOfSetBits()慢了4倍以上。基于查找表的实现仍然要快得多,特别是对于一个65 kB的表。
public class BinaryCounter {
private int N;
public BinaryCounter(int N) {
this.N = N;
}
public static void main(String[] args) {
BinaryCounter counter=new BinaryCounter(7);
System.out.println("Number of ones is "+ counter.count());
}
public int count(){
if(N<=0) return 0;
int counter=0;
int K = 0;
do{
K = biggestPowerOfTwoSmallerThan(N);
N = N-K;
counter++;
}while (N != 0);
return counter;
}
private int biggestPowerOfTwoSmallerThan(int N) {
if(N==1) return 1;
for(int i=0;i<N;i++){
if(Math.pow(2, i) > N){
int power = i-1;
return (int) Math.pow(2, power);
}
}
return 0;
}
}
对于Java,有一个Java .util. bitset。 https://docs.oracle.com/javase/8/docs/api/java/util/BitSet.html
cardinality():返回在BitSet中设置为true的比特数。
BitSet是内存高效的,因为它被存储为Long类型。
Python的解决方案:
def hammingWeight(n: int) -> int:
sums = 0
while (n!=0):
sums+=1
n = n &(n-1)
return sums
在二进制表示中,n中最不有效的1位总是对应n - 1中的0位。因此,对n和n - 1这两个数进行and运算总是将n中最不有效的1位翻转为0,并保持所有其他位相同。