代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
当前回答
我使用下面更直观的代码。
int countSetBits(int n) {
return !n ? 0 : 1 + countSetBits(n & (n-1));
}
逻辑:n & (n-1)重置n的最后一个集合位。
附注:我知道这不是O(1)解,尽管这是一个有趣的解。
其他回答
一个简单的算法来计算设置位的数量:
int countbits(n) {
int count = 0;
while(n != 0) {
n = n & (n-1);
count++;
}
return count;
}
以11(1011)为例,尝试手动运行该算法。它应该对你有很大帮助!
在我看来,“最好”的解决方案是另一个程序员(或者两年后的原始程序员)可以阅读而不需要大量注释的解决方案。你可能想要最快或最聪明的解决方案,有些人已经提供了,但我更喜欢可读性而不是聪明。
unsigned int bitCount (unsigned int value) {
unsigned int count = 0;
while (value > 0) { // until all bits are zero
if ((value & 1) == 1) // check lower bit
count++;
value >>= 1; // shift bits, removing lower bit
}
return count;
}
如果你想要更快的速度(并且假设你很好地记录了它,以帮助你的继任者),你可以使用表格查找:
// Lookup table for fast calculation of bits set in 8-bit unsigned char.
static unsigned char oneBitsInUChar[] = {
// 0 1 2 3 4 5 6 7 8 9 A B C D E F (<- n)
// =====================================================
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, // 0n
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, // 1n
: : :
4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, // Fn
};
// Function for fast calculation of bits set in 16-bit unsigned short.
unsigned char oneBitsInUShort (unsigned short x) {
return oneBitsInUChar [x >> 8]
+ oneBitsInUChar [x & 0xff];
}
// Function for fast calculation of bits set in 32-bit unsigned int.
unsigned char oneBitsInUInt (unsigned int x) {
return oneBitsInUShort (x >> 16)
+ oneBitsInUShort (x & 0xffff);
}
这些依赖于特定的数据类型大小,所以它们不是那么可移植的。但是,由于许多性能优化是不可移植的,这可能不是一个问题。如果您想要可移植性,我会坚持使用可读的解决方案。
unsigned int count_bit(unsigned int x)
{
x = (x & 0x55555555) + ((x >> 1) & 0x55555555);
x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
x = (x & 0x0F0F0F0F) + ((x >> 4) & 0x0F0F0F0F);
x = (x & 0x00FF00FF) + ((x >> 8) & 0x00FF00FF);
x = (x & 0x0000FFFF) + ((x >> 16)& 0x0000FFFF);
return x;
}
我来解释一下这个算法。
该算法基于分治算法。假设有一个8位整数213(二进制的11010101),算法是这样工作的(每次合并两个邻居块):
+-------------------------------+
| 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | <- x
| 1 0 | 0 1 | 0 1 | 0 1 | <- first time merge
| 0 0 1 1 | 0 0 1 0 | <- second time merge
| 0 0 0 0 0 1 0 1 | <- third time ( answer = 00000101 = 5)
+-------------------------------+
你可以:
while(n){
n = n & (n-1);
count++;
}
这背后的逻辑是n-1位从n的最右边的集合位倒出来。
如果n=6,即110,那么5是101,位从n的最右边的集合位倒出来。
因此,如果我们&这两个,我们将在每次迭代中使最右边的位为0,并且总是到下一个最右边的集位。因此,计数设置位。当每一位都被设置时,最糟糕的时间复杂度将是O(log n)。
对于Java,有一个Java .util. bitset。 https://docs.oracle.com/javase/8/docs/api/java/util/BitSet.html
cardinality():返回在BitSet中设置为true的比特数。
BitSet是内存高效的,因为它被存储为Long类型。