代表数字7的8位像这样:

00000111

设置了三个比特。

确定32位整数中设置位数的算法是什么?


当前回答

你可以:

while(n){
    n = n & (n-1);
    count++;
}

这背后的逻辑是n-1位从n的最右边的集合位倒出来。

如果n=6,即110,那么5是101,位从n的最右边的集合位倒出来。

因此,如果我们&这两个,我们将在每次迭代中使最右边的位为0,并且总是到下一个最右边的集位。因此,计数设置位。当每一位都被设置时,最糟糕的时间复杂度将是O(log n)。

其他回答

我认为最快的方法——不使用查找表和popcount——是以下方法。它仅通过12次操作来计数设置位。

int popcount(int v) {
    v = v - ((v >> 1) & 0x55555555);                // put count of each 2 bits into those 2 bits
    v = (v & 0x33333333) + ((v >> 2) & 0x33333333); // put count of each 4 bits into those 4 bits  
    return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
}

它之所以有效,是因为你可以通过将设置位分为两半来计算总设置位的数量,计算两半设置位的数量,然后将它们相加。也被称为分而治之范式。让我们来详细谈谈。

v = v - ((v >> 1) & 0x55555555); 

两位位数可以是0b00、0b01或0b10。让我们试着在2位上解决这个问题。

 ---------------------------------------------
 |   v    |   (v >> 1) & 0b0101   |  v - x   |
 ---------------------------------------------
   0b00           0b00               0b00   
   0b01           0b00               0b01     
   0b10           0b01               0b01
   0b11           0b01               0b10

这就是所需要的:最后一列显示每两个位对中设置位的计数。如果两个比特数>= 2 (0b10),则产生0b01,否则产生0b00。

v = (v & 0x33333333) + ((v >> 2) & 0x33333333); 

这句话应该很容易理解。在第一个操作之后,我们每两个比特中就有一个set位的计数,现在我们每4个比特中就有一个set位的计数。

v & 0b00110011         //masks out even two bits
(v >> 2) & 0b00110011  // masks out odd two bits

然后我们把上面的结果加起来,得到4位的集合位总数。最后一个陈述是最棘手的。

c = ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;

让我们进一步分析一下……

v + (v >> 4)

这和第二种说法很相似;我们以4为一组来计数集合位。因为我们之前的运算,我们知道每一个咬痕都有一个集合位的计数。让我们看一个例子。假设我们有字节0b01000010。这意味着第一个啃食有它的4位设置,第二个有它的2位设置。现在我们把这些小块加在一起。

v = 0b01000010
(v >> 4) = 0b00000100
v + (v >> 4) = 0b01000010 + 0b00000100

它为我们提供了一个字节中set位的计数,在第二个nibble 0b01000110中,因此我们掩码了该数字中所有字节的前四个字节(丢弃它们)。

0b01000110 & 0x0F = 0b00000110

现在每个字节都有一个集合位的计数。我们需要把它们全部加起来。诀窍是将结果乘以0b10101010,它有一个有趣的属性。如果我们的数字有四个字节,A B C D,它将产生一个新的数字,包含这些字节A+B+C+D B+C+D C+D。一个4字节的数字最多可以设置32位,可以表示为0b00100000。

我们现在需要的是第一个字节,它是所有字节中所有set位的和,我们通过>> 24得到它。该算法是为32位字设计的,但可以很容易地修改为64位字。

int bitcount(unsigned int n)
{ 
      int count=0;
      while(n)
      {
           count += n & 0x1u;
           n >>= 1;
      }
      return  count;
 }

迭代的“计数”运行的时间与总比特数成比例。它只是循环遍历所有位,因为while条件而稍微提前终止。如果1'S或集合位是稀疏的且在最低有效位之间,则很有用。

如果你使用c++,另一个选择是使用模板元编程:

// recursive template to sum bits in an int
template <int BITS>
int countBits(int val) {
        // return the least significant bit plus the result of calling ourselves with
        // .. the shifted value
        return (val & 0x1) + countBits<BITS-1>(val >> 1);
}

// template specialisation to terminate the recursion when there's only one bit left
template<>
int countBits<1>(int val) {
        return val & 0x1;
}

用法如下:

// to count bits in a byte/char (this returns 8)
countBits<8>( 255 )

// another byte (this returns 7)
countBits<8>( 254 )

// counting bits in a word/short (this returns 1)
countBits<16>( 256 )

当然,你可以进一步扩展这个模板来使用不同的类型(甚至是自动检测位大小),但为了清晰起见,我让它保持简单。

edit:忘了说这很好,因为它应该在任何c++编译器中工作,它基本上只是为你展开循环,如果一个常量值用于比特计数(换句话说,我很确定这是你能找到的最快的通用方法)

为什么不迭代地除以2呢?

count = 0
while n > 0
  if (n % 2) == 1
    count += 1
  n /= 2  

我同意这不是最快的,但是“最好”这个词有点含糊不清。我认为“最好”应该有一个清晰的元素

这是一个有助于了解您的微架构的问题。我只是在gcc 4.3.3下用-O3编译的两个变量使用c++内联来计时,以消除函数调用开销,十亿次迭代,保持所有计数的运行总和,以确保编译器不删除任何重要的东西,使用rdtsc计时(精确的时钟周期)。

inline int pop2(unsigned x, unsigned y)
{
    x = x - ((x >> 1) & 0x55555555);
    y = y - ((y >> 1) & 0x55555555);
    x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
    y = (y & 0x33333333) + ((y >> 2) & 0x33333333);
    x = (x + (x >> 4)) & 0x0F0F0F0F;
    y = (y + (y >> 4)) & 0x0F0F0F0F;
    x = x + (x >> 8);
    y = y + (y >> 8);
    x = x + (x >> 16);
    y = y + (y >> 16);
    return (x+y) & 0x000000FF;
}

未经修改的黑客喜悦需要122亿周期。我的并行版本(计算的比特数是它的两倍)的运行周期为13.0千兆周期。在2.4GHz的酷睿双核上,两者总共消耗了10.5秒。在这个时钟频率下,25千兆周期= 10秒多一点,所以我相信我的计时是正确的。

这与指令依赖链有关,这对算法非常不利。通过使用一对64位寄存器,我几乎可以再次将速度提高一倍。事实上,如果我聪明一点,早点加上x+y,我就可以减少一些移位。64位版本做了一些小的调整,结果是相同的,但又增加了一倍的比特数。

对于128位SIMD寄存器,这是另一个因素,SSE指令集通常也有聪明的快捷方式。

没有理由让代码特别透明。该算法界面简单,可在多处在线引用,并能通过全面的单元测试。偶然发现它的程序员甚至可能学到一些东西。这些位操作在机器级别上是非常自然的。

好吧,我决定搁置调整后的64位版本。对于这个sizeof(unsigned long) == 8

inline int pop2(unsigned long x, unsigned long y)
{
    x = x - ((x >> 1) & 0x5555555555555555);
    y = y - ((y >> 1) & 0x5555555555555555);
    x = (x & 0x3333333333333333) + ((x >> 2) & 0x3333333333333333);
    y = (y & 0x3333333333333333) + ((y >> 2) & 0x3333333333333333);
    x = (x + (x >> 4)) & 0x0F0F0F0F0F0F0F0F;
    y = (y + (y >> 4)) & 0x0F0F0F0F0F0F0F0F;
    x = x + y; 
    x = x + (x >> 8);
    x = x + (x >> 16);
    x = x + (x >> 32); 
    return x & 0xFF;
}

这看起来是对的(不过我没有仔细测试)。现在计时结果是10.70亿周期/ 14.1亿周期。后面的数字加起来是1280亿比特,相当于这台机器运行了5.9秒。非并行版本稍微加快了一点,因为我在64位模式下运行,它更喜欢64位寄存器,而不是32位寄存器。

让我们看看这里是否有更多的OOO管道。这有点复杂,所以我实际上测试了一些。每一项单独加起来是64,所有项加起来是256。

inline int pop4(unsigned long x, unsigned long y, 
                unsigned long u, unsigned long v)
{
  enum { m1 = 0x5555555555555555, 
         m2 = 0x3333333333333333, 
         m3 = 0x0F0F0F0F0F0F0F0F, 
         m4 = 0x000000FF000000FF };

    x = x - ((x >> 1) & m1);
    y = y - ((y >> 1) & m1);
    u = u - ((u >> 1) & m1);
    v = v - ((v >> 1) & m1);
    x = (x & m2) + ((x >> 2) & m2);
    y = (y & m2) + ((y >> 2) & m2);
    u = (u & m2) + ((u >> 2) & m2);
    v = (v & m2) + ((v >> 2) & m2);
    x = x + y; 
    u = u + v; 
    x = (x & m3) + ((x >> 4) & m3);
    u = (u & m3) + ((u >> 4) & m3);
    x = x + u; 
    x = x + (x >> 8);
    x = x + (x >> 16);
    x = x & m4; 
    x = x + (x >> 32);
    return x & 0x000001FF;
}

我兴奋了一会儿,但结果是gcc在-O3上玩内联的把戏,尽管我在一些测试中没有使用内联关键字。当我让gcc玩把戏时,对pop4()的十亿次调用需要12.56 gigacycles,但我确定它是将参数折叠为常量表达式。更实际的数字似乎是19.6gc,以实现30%的加速。我的测试循环现在看起来像这样,确保每个参数足够不同,以阻止gcc耍花招。

   hitime b4 = rdtsc(); 
   for (unsigned long i = 10L * 1000*1000*1000; i < 11L * 1000*1000*1000; ++i) 
      sum += pop4 (i,  i^1, ~i, i|1); 
   hitime e4 = rdtsc(); 

2560亿比特加起来在8.17秒内过去了。根据16位表查找的基准测试,3200万比特的计算结果为1.02秒。不能直接比较,因为另一个工作台没有给出时钟速度,但看起来我已经把64KB表版本的鼻涕打出来了,这首先是L1缓存的悲惨使用。

更新:决定做明显的和创建pop6()通过增加四个重复的行。结果是22.8gc, 3840亿比特在9.5秒内加起来。所以还有20%现在是800毫秒,320亿比特。