Is there a performance or code maintenance issue with using assert as part of the standard code instead of using it just for debugging purposes? Is assert x >= 0, 'x is less than zero' better or worse than if x < 0: raise Exception('x is less than zero') Also, is there any way to set a business rule like if x < 0 raise error that is always checked without the try/except/finally so, if at anytime throughout the code x is less than 0 an error is raised, like if you set assert x < 0 at the start of a function, anywhere within the function where x becomes less then 0 an exception is raised?
当前回答
英语单词assert在这里的意思是发誓、肯定、宣称。它的意思不是“检查”或“应该是”。这意味着你作为一个程序员要在这里做一个宣誓声明:
# I solemnly swear that here I will tell the truth, the whole truth,
# and nothing but the truth, under pains and penalties of perjury, so help me FSM
assert answer == 42
如果代码是正确的,除了单事件中断、硬件故障等,任何断言都不会失败。这就是为什么程序对终端用户的行为不能受到影响。特别是,断言即使在异常的编程条件下也不能失败。这种事从来没有发生过。如果发生这种情况,程序员应该为此受到惩罚。
其他回答
我补充说,我经常使用断言来指定属性,比如循环不变量或我的代码应该具有的逻辑属性,就像我在正式验证的软件中指定它们一样。
它们有两个目的,告诉读者,帮助我推理,并检查我在推理中没有犯错误。例如 :
k = 0
for i in range(n):
assert k == i * (i + 1) // 2
k += i
#do some things
或者在更复杂的情况下:
def sorted(l):
return all(l1 <= l2 for l1, l2 in zip(l, l[1:]))
def mergesort(l):
if len(l) < 2: #python 3.10 will have match - case for this instead of checking length
return l
k = len(l // 2)
l1 = mergesort(l[:k])
l2 = mergesort(l[k:])
assert sorted(l1) # here the asserts allow me to explicit what properties my code should have
assert sorted(l2) # I expect them to be disabled in a production build
return merge(l1, l2)
因为当python在优化模式下运行时,断言是禁用的,所以不要犹豫在它们中编写代价高昂的条件,特别是当它使您的代码更清晰,更不容易出现错误时
英语单词assert在这里的意思是发誓、肯定、宣称。它的意思不是“检查”或“应该是”。这意味着你作为一个程序员要在这里做一个宣誓声明:
# I solemnly swear that here I will tell the truth, the whole truth,
# and nothing but the truth, under pains and penalties of perjury, so help me FSM
assert answer == 42
如果代码是正确的,除了单事件中断、硬件故障等,任何断言都不会失败。这就是为什么程序对终端用户的行为不能受到影响。特别是,断言即使在异常的编程条件下也不能失败。这种事从来没有发生过。如果发生这种情况,程序员应该为此受到惩罚。
是否存在性能问题?
Please remember to "make it work first before you make it work fast". Very few percent of any program are usually relevant for its speed. You can always kick out or simplify an assert if it ever proves to be a performance problem -- and most of them never will. Be pragmatic: Assume you have a method that processes a non-empty list of tuples and the program logic will break if those tuples are not immutable. You should write: def mymethod(listOfTuples): assert(all(type(tp)==tuple for tp in listOfTuples)) This is probably fine if your lists tend to be ten entries long, but it can become a problem if they have a million entries. But rather than discarding this valuable check entirely you could simply downgrade it to def mymethod(listOfTuples): assert(type(listOfTuples[0])==tuple) # in fact _all_ must be tuples! which is cheap but will likely catch most of the actual program errors anyway.
当x在整个函数中小于零时,能够自动抛出错误。您可以使用类描述符。这里有一个例子:
class LessThanZeroException(Exception):
pass
class variable(object):
def __init__(self, value=0):
self.__x = value
def __set__(self, obj, value):
if value < 0:
raise LessThanZeroException('x is less than zero')
self.__x = value
def __get__(self, obj, objType):
return self.__x
class MyClass(object):
x = variable()
>>> m = MyClass()
>>> m.x = 10
>>> m.x -= 20
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "my.py", line 7, in __set__
raise LessThanZeroException('x is less than zero')
LessThanZeroException: x is less than zero
"assert"语句在编译优化时被删除。所以,是的,它们在性能和功能上都有差异。
在编译时请求优化时,当前代码生成器不会为assert语句生成代码。Python 3 Docs
如果您使用assert来实现应用程序功能,然后优化部署到生产环境,那么您将受到“但它在开发中有效”缺陷的困扰。
参见PYTHONOPTIMIZE和-O -OO
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式
- 使用try和。Python中的if
- 如何在Python中获得所有直接子目录