Is there a performance or code maintenance issue with using assert as part of the standard code instead of using it just for debugging purposes? Is assert x >= 0, 'x is less than zero' better or worse than if x < 0: raise Exception('x is less than zero') Also, is there any way to set a business rule like if x < 0 raise error that is always checked without the try/except/finally so, if at anytime throughout the code x is less than 0 an error is raised, like if you set assert x < 0 at the start of a function, anywhere within the function where x becomes less then 0 an exception is raised?
当前回答
英语单词assert在这里的意思是发誓、肯定、宣称。它的意思不是“检查”或“应该是”。这意味着你作为一个程序员要在这里做一个宣誓声明:
# I solemnly swear that here I will tell the truth, the whole truth,
# and nothing but the truth, under pains and penalties of perjury, so help me FSM
assert answer == 42
如果代码是正确的,除了单事件中断、硬件故障等,任何断言都不会失败。这就是为什么程序对终端用户的行为不能受到影响。特别是,断言即使在异常的编程条件下也不能失败。这种事从来没有发生过。如果发生这种情况,程序员应该为此受到惩罚。
其他回答
当x在整个函数中小于零时,能够自动抛出错误。您可以使用类描述符。这里有一个例子:
class LessThanZeroException(Exception):
pass
class variable(object):
def __init__(self, value=0):
self.__x = value
def __set__(self, obj, value):
if value < 0:
raise LessThanZeroException('x is less than zero')
self.__x = value
def __get__(self, obj, objType):
return self.__x
class MyClass(object):
x = variable()
>>> m = MyClass()
>>> m.x = 10
>>> m.x -= 20
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "my.py", line 7, in __set__
raise LessThanZeroException('x is less than zero')
LessThanZeroException: x is less than zero
这种方法唯一真正的错误是,很难使用断言语句产生非常描述性的异常。如果你正在寻找更简单的语法,记住你也可以这样做:
class XLessThanZeroException(Exception):
pass
def CheckX(x):
if x < 0:
raise XLessThanZeroException()
def foo(x):
CheckX(x)
#do stuff here
另一个问题是,使用assert进行正常的条件检查会使使用-O标志禁用调试断言变得困难。
除了其他答案之外,断言本身也会抛出异常,但仅抛出AssertionErrors。从实用主义的角度来看,当您需要对捕获的异常进行精细控制时,断言并不适合。
在诸如PTVS、PyCharm、Wing assert isinstance()等IDE中,可以使用isinstance语句对一些不清楚的对象启用代码补全。
我补充说,我经常使用断言来指定属性,比如循环不变量或我的代码应该具有的逻辑属性,就像我在正式验证的软件中指定它们一样。
它们有两个目的,告诉读者,帮助我推理,并检查我在推理中没有犯错误。例如 :
k = 0
for i in range(n):
assert k == i * (i + 1) // 2
k += i
#do some things
或者在更复杂的情况下:
def sorted(l):
return all(l1 <= l2 for l1, l2 in zip(l, l[1:]))
def mergesort(l):
if len(l) < 2: #python 3.10 will have match - case for this instead of checking length
return l
k = len(l // 2)
l1 = mergesort(l[:k])
l2 = mergesort(l[k:])
assert sorted(l1) # here the asserts allow me to explicit what properties my code should have
assert sorted(l2) # I expect them to be disabled in a production build
return merge(l1, l2)
因为当python在优化模式下运行时,断言是禁用的,所以不要犹豫在它们中编写代价高昂的条件,特别是当它使您的代码更清晰,更不容易出现错误时
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式
- 使用try和。Python中的if
- 如何在Python中获得所有直接子目录