Is there a performance or code maintenance issue with using assert as part of the standard code instead of using it just for debugging purposes? Is assert x >= 0, 'x is less than zero' better or worse than if x < 0: raise Exception('x is less than zero') Also, is there any way to set a business rule like if x < 0 raise error that is always checked without the try/except/finally so, if at anytime throughout the code x is less than 0 an error is raised, like if you set assert x < 0 at the start of a function, anywhere within the function where x becomes less then 0 an exception is raised?
当前回答
这种方法唯一真正的错误是,很难使用断言语句产生非常描述性的异常。如果你正在寻找更简单的语法,记住你也可以这样做:
class XLessThanZeroException(Exception):
pass
def CheckX(x):
if x < 0:
raise XLessThanZeroException()
def foo(x):
CheckX(x)
#do stuff here
另一个问题是,使用assert进行正常的条件检查会使使用-O标志禁用调试断言变得困难。
其他回答
当x在整个函数中小于零时,能够自动抛出错误。您可以使用类描述符。这里有一个例子:
class LessThanZeroException(Exception):
pass
class variable(object):
def __init__(self, value=0):
self.__x = value
def __set__(self, obj, value):
if value < 0:
raise LessThanZeroException('x is less than zero')
self.__x = value
def __get__(self, obj, objType):
return self.__x
class MyClass(object):
x = variable()
>>> m = MyClass()
>>> m.x = 10
>>> m.x -= 20
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "my.py", line 7, in __set__
raise LessThanZeroException('x is less than zero')
LessThanZeroException: x is less than zero
这种方法唯一真正的错误是,很难使用断言语句产生非常描述性的异常。如果你正在寻找更简单的语法,记住你也可以这样做:
class XLessThanZeroException(Exception):
pass
def CheckX(x):
if x < 0:
raise XLessThanZeroException()
def foo(x):
CheckX(x)
#do stuff here
另一个问题是,使用assert进行正常的条件检查会使使用-O标志禁用调试断言变得困难。
断言应该用于测试不应该发生的情况。目的是在程序状态损坏的情况下尽早崩溃。
异常应该用于可能发生的错误,并且几乎总是应该创建自己的Exception类。
例如,如果您正在编写一个从配置文件读取到dict的函数,那么文件中的不当格式将引发ConfigurationSyntaxError,而您可以断言您不会返回None。
在您的示例中,如果x是通过用户界面或外部源设置的值,则最好使用异常。
如果x只是在同一个程序中由您自己的代码设置的,则使用断言。
除了其他答案之外,断言本身也会抛出异常,但仅抛出AssertionErrors。从实用主义的角度来看,当您需要对捕获的异常进行精细控制时,断言并不适合。
Assert是检查- 1. 有效条件, 2. 有效的表述, 3.真正的逻辑; 源代码。它不会让整个项目失败,而是会发出警报,提示源文件中有些地方不合适。
在例1中,因为变量'str'不是空的。因此不会引发任何断言或异常。
示例1:
#!/usr/bin/python
str = 'hello Python!'
strNull = 'string is Null'
if __debug__:
if not str: raise AssertionError(strNull)
print str
if __debug__:
print 'FileName '.ljust(30,'.'),(__name__)
print 'FilePath '.ljust(30,'.'),(__file__)
------------------------------------------------------
Output:
hello Python!
FileName ..................... hello
FilePath ..................... C:/Python\hello.py
在例2中,var 'str'为空。因此,我们可以通过assert语句来避免用户走在错误程序前面。
示例2:
#!/usr/bin/python
str = ''
strNull = 'NULL String'
if __debug__:
if not str: raise AssertionError(strNull)
print str
if __debug__:
print 'FileName '.ljust(30,'.'),(__name__)
print 'FilePath '.ljust(30,'.'),(__file__)
------------------------------------------------------
Output:
AssertionError: NULL String
当我们不想调试并意识到源代码中的断言问题时。禁用优化标志
python -O assertStatement.py 没有东西会被打印出来
推荐文章
- pylab和pyplot的区别是什么?
- Argparse:确定使用了哪个子解析器
- django导入错误-没有core.management模块
- 在芹菜中检索队列中的任务列表
- 使用beautifulsoup提取属性值
- 如何禁用标准错误流的日志记录?
- 用Matplotlib在Python中绘制时间
- 类中的Python装饰器
- 在Python中锁定文件
- 得到熊猫栏目的总数
- 从pandas DataFrame中删除名称包含特定字符串的列
- Mock vs MagicMock
- 如何阅读一个。xlsx文件使用熊猫库在iPython?
- 如何访问熊猫组由数据帧按键
- Pandas和NumPy+SciPy在Python中的区别是什么?