Is there a performance or code maintenance issue with using assert as part of the standard code instead of using it just for debugging purposes? Is assert x >= 0, 'x is less than zero' better or worse than if x < 0: raise Exception('x is less than zero') Also, is there any way to set a business rule like if x < 0 raise error that is always checked without the try/except/finally so, if at anytime throughout the code x is less than 0 an error is raised, like if you set assert x < 0 at the start of a function, anywhere within the function where x becomes less then 0 an exception is raised?


当前回答

当x在整个函数中小于零时,能够自动抛出错误。您可以使用类描述符。这里有一个例子:

class LessThanZeroException(Exception):
    pass

class variable(object):
    def __init__(self, value=0):
        self.__x = value

    def __set__(self, obj, value):
        if value < 0:
            raise LessThanZeroException('x is less than zero')

        self.__x  = value

    def __get__(self, obj, objType):
        return self.__x

class MyClass(object):
    x = variable()

>>> m = MyClass()
>>> m.x = 10
>>> m.x -= 20
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "my.py", line 7, in __set__
    raise LessThanZeroException('x is less than zero')
LessThanZeroException: x is less than zero

其他回答

assert的四个目的

假设您与四位同事Alice、Bernd、Carl和Daphne一起处理20万行代码。 他们喊你的代码,你喊他们的代码。

那么assert有四个角色:

Inform Alice, Bernd, Carl, and Daphne what your code expects. Assume you have a method that processes a list of tuples and the program logic can break if those tuples are not immutable: def mymethod(listOfTuples): assert(all(type(tp)==tuple for tp in listOfTuples)) This is more trustworthy than equivalent information in the documentation and much easier to maintain. Inform the computer what your code expects. assert enforces proper behavior from the callers of your code. If your code calls Alices's and Bernd's code calls yours, then without the assert, if the program crashes in Alices code, Bernd might assume it was Alice's fault, Alice investigates and might assume it was your fault, you investigate and tell Bernd it was in fact his. Lots of work lost. With asserts, whoever gets a call wrong, they will quickly be able to see it was their fault, not yours. Alice, Bernd, and you all benefit. Saves immense amounts of time. Inform the readers of your code (including yourself) what your code has achieved at some point. Assume you have a list of entries and each of them can be clean (which is good) or it can be smorsh, trale, gullup, or twinkled (which are all not acceptable). If it's smorsh it must be unsmorshed; if it's trale it must be baludoed; if it's gullup it must be trotted (and then possibly paced, too); if it's twinkled it must be twinkled again except on Thursdays. You get the idea: It's complicated stuff. But the end result is (or ought to be) that all entries are clean. The Right Thing(TM) to do is to summarize the effect of your cleaning loop as assert(all(entry.isClean() for entry in mylist)) This statements saves a headache for everybody trying to understand what exactly it is that the wonderful loop is achieving. And the most frequent of these people will likely be yourself. Inform the computer what your code has achieved at some point. Should you ever forget to pace an entry needing it after trotting, the assert will save your day and avoid that your code breaks dear Daphne's much later.

在我看来,assert的两个文档目的(1和3)和 保障措施(2和4)同样有价值。 告知人民甚至可能比告知计算机更有价值 因为它可以防止assert要捕捉的错误(在情况1中) 无论如何,接下来还有很多错误。

Assert是检查- 1. 有效条件, 2. 有效的表述, 3.真正的逻辑; 源代码。它不会让整个项目失败,而是会发出警报,提示源文件中有些地方不合适。

在例1中,因为变量'str'不是空的。因此不会引发任何断言或异常。

示例1:

#!/usr/bin/python

str = 'hello Python!'
strNull = 'string is Null'

if __debug__:
    if not str: raise AssertionError(strNull)
print str

if __debug__:
    print 'FileName '.ljust(30,'.'),(__name__)
    print 'FilePath '.ljust(30,'.'),(__file__)


------------------------------------------------------

Output:
hello Python!
FileName ..................... hello
FilePath ..................... C:/Python\hello.py

在例2中,var 'str'为空。因此,我们可以通过assert语句来避免用户走在错误程序前面。

示例2:

#!/usr/bin/python

str = ''
strNull = 'NULL String'

if __debug__:
    if not str: raise AssertionError(strNull)
print str

if __debug__:
    print 'FileName '.ljust(30,'.'),(__name__)
    print 'FilePath '.ljust(30,'.'),(__file__)


------------------------------------------------------

Output:
AssertionError: NULL String

当我们不想调试并意识到源代码中的断言问题时。禁用优化标志

python -O assertStatement.py 没有东西会被打印出来

无论如何,如果你处理的代码依赖assert来正常工作,那么添加以下代码将确保assert被启用:

try:
    assert False
    raise Exception('Python assertions are not working. This tool relies on Python assertions to do its job. Possible causes are running with the "-O" flag or running a precompiled (".pyo" or ".pyc") module.')
except AssertionError:
    pass

是否存在性能问题?

Please remember to "make it work first before you make it work fast". Very few percent of any program are usually relevant for its speed. You can always kick out or simplify an assert if it ever proves to be a performance problem -- and most of them never will. Be pragmatic: Assume you have a method that processes a non-empty list of tuples and the program logic will break if those tuples are not immutable. You should write: def mymethod(listOfTuples): assert(all(type(tp)==tuple for tp in listOfTuples)) This is probably fine if your lists tend to be ten entries long, but it can become a problem if they have a million entries. But rather than discarding this valuable check entirely you could simply downgrade it to def mymethod(listOfTuples): assert(type(listOfTuples[0])==tuple) # in fact _all_ must be tuples! which is cheap but will likely catch most of the actual program errors anyway.

"assert"语句在编译优化时被删除。所以,是的,它们在性能和功能上都有差异。

在编译时请求优化时,当前代码生成器不会为assert语句生成代码。Python 3 Docs

如果您使用assert来实现应用程序功能,然后优化部署到生产环境,那么您将受到“但它在开发中有效”缺陷的困扰。

参见PYTHONOPTIMIZE和-O -OO