我有一个包含15个数字的列表,我需要编写一些代码来生成这些数字的所有32,768种组合。

我已经找到了一些代码(通过谷歌搜索),显然做了我正在寻找的,但我发现代码相当不透明,并谨慎使用它。而且我觉得肯定有更优雅的解决方案。

我唯一想到的就是循环十进制整数1-32768并将其转换为二进制,并使用二进制表示作为筛选器来挑选适当的数字。

有人知道更好的办法吗?使用map(),也许?


当前回答

下面是itertools.combination的两个实现

返回一个列表的函数

def combinations(lst, depth, start=0, items=[]):
    if depth <= 0:
        return [items]
    out = []
    for i in range(start, len(lst)):
        out += combinations(lst, depth - 1, i + 1, items + [lst[i]])
    return out

一个返回一个生成器

def combinations(lst, depth, start=0, prepend=[]):
    if depth <= 0:
        yield prepend
    else:
        for i in range(start, len(lst)):
            for c in combinations(lst, depth - 1, i + 1, prepend + [lst[i]]):
                yield c

请注意,建议为它们提供一个helper函数,因为prepend参数是静态的,不会随着每次调用而改变

print([c for c in combinations([1, 2, 3, 4], 3)])
# [[1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4]]

# get a hold of prepend
prepend = [c for c in combinations([], -1)][0]
prepend.append(None)

print([c for c in combinations([1, 2, 3, 4], 3)])
# [[None, 1, 2, 3], [None, 1, 2, 4], [None, 1, 3, 4], [None, 2, 3, 4]]

这是一个很肤浅的例子,但小心为妙

其他回答

我在这个话题上有点晚了,但我想我可以帮助别人。

你可以使用itertools中的product:

from itertools import product

n = [1, 2, 3]

result = product(n, repeat=3) # You can change the repeat more then n length

print(list(result))

输出:

[(1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 2, 1), (1, 2, 2), (1, 2, 3), (1, 3, 1),
 (1, 3, 2), (1, 3, 3), (2, 1, 1), (2, 1, 2), (2, 1, 3), (2, 2, 1), (2, 2, 2),
 (2, 2, 3), (2, 3, 1), (2, 3, 2), (2, 3, 3), (3, 1, 1), (3, 1, 2), (3, 1, 3), 
(3, 2, 1), (3, 2, 2), (3, 2, 3), (3, 3, 1), (3, 3, 2), (3, 3, 3)]

另一个例子,但是改变了repeat参数:

from itertools import product

n = [1, 2, 3]

result = product(n, repeat=4) # Changing repeat to 4
print(list(result))

输出:

(1, 1, 2, 3), (1, 1, 3, 1), (1, 1, 3, 2), (1, 1, 3, 3), (1, 2, 1, 1), 
(1, 2, 1, 2), (1, 2, 1, 3), (1, 2, 2, 1), (1, 2, 2, 2), (1, 2, 2, 3), 
(1, 2, 3, 1), (1, 2, 3, 2), (1, 2, 3, 3), (1, 3, 1, 1), (1, 3, 1, 2), 
(1, 3, 1, 3), (1, 3, 2, 1), (1, 3, 2, 2), (1, 3, 2, 3), (1, 3, 3, 1), 
(1, 3, 3, 2), (1, 3, 3, 3), (2, 1, 1, 1), (2, 1, 1, 2), (2, 1, 1, 3), 
(2, 1, 2, 1), (2, 1, 2, 2), (2, 1, 2, 3), (2, 1, 3, 1), (2, 1, 3, 2),
 (2, 1, 3, 3), (2, 2, 1, 1), (2, 2, 1, 2), (2, 2, 1, 3), (2, 2, 2, 1), 
(2, 2, 2, 2), (2, 2, 2, 3), (2, 2, 3, 1), (2, 2, 3, 2), (2, 2, 3, 3), 
(2, 3, 1, 1), (2, 3, 1, 2), (2, 3, 1, 3), (2, 3, 2, 1), (2, 3, 2, 2), 
(2, 3, 2, 3), (2, 3, 3, 1), (2, 3, 3, 2), (2, 3, 3, 3), (3, 1, 1, 1), 
(3, 1, 1, 2), (3, 1, 1, 3), (3, 1, 2, 1), (3, 1, 2, 2), (3, 1, 2, 3), 
(3, 1, 3, 1), (3, 1, 3, 2), (3, 1, 3, 3), (3, 2, 1, 1), (3, 2, 1, 2), 
(3, 2, 1, 3), (3, 2, 2, 1), (3, 2, 2, 2), (3, 2, 2, 3), (3, 2, 3, 1), 
(3, 2, 3, 2), (3, 2, 3, 3), (3, 3, 1, 1), (3, 3, 1, 2), (3, 3, 1, 3), 
(3, 3, 2, 1), (3, 3, 2, 2), (3, 3, 2, 3), (3, 3, 3, 1), (3, 3, 3, 2), 
(3, 3, 3, 3)]```

我同意Dan H的观点,Ben确实要求所有的组合。itertools.combination()不会给出所有的组合。

另一个问题是,如果输入iterable很大,返回一个生成器而不是列表中的所有内容可能会更好:

iterable = range(10)
for s in xrange(len(iterable)+1):
  for comb in itertools.combinations(iterable, s):
    yield comb

下面是一个使用递归的例子:

>>> import copy
>>> def combinations(target,data):
...     for i in range(len(data)):
...         new_target = copy.copy(target)
...         new_data = copy.copy(data)
...         new_target.append(data[i])
...         new_data = data[i+1:]
...         print new_target
...         combinations(new_target,
...                      new_data)
...                      
... 
>>> target = []
>>> data = ['a','b','c','d']
>>> 
>>> combinations(target,data)
['a']
['a', 'b']
['a', 'b', 'c']
['a', 'b', 'c', 'd']
['a', 'b', 'd']
['a', 'c']
['a', 'c', 'd']
['a', 'd']
['b']
['b', 'c']
['b', 'c', 'd']
['b', 'd']
['c']
['c', 'd']
['d']

如果你不想使用组合库,这里是解决方案:

nums = [1,2,3]
p = [[]]
fnl = [[],nums]

for i in range(len(nums)):
    for j in range(i+1,len(nums)):
        p[-1].append([i,j])

for i in range(len(nums)-3):
    p.append([])
    for m in p[-2]:
        p[-1].append(m+[m[-1]+1])

for i in p:
    for j in i:
        n = []
        for m in j:
            if m < len(nums):
                n.append(nums[m])
        if n not in fnl:
            fnl.append(n)

for i in nums:
    if [i] not in fnl:
        fnl.append([i])

print(fnl)

输出:

[[], [1, 2, 3], [1, 2], [1, 3], [2, 3], [1], [2], [3]]

下面是一个惰性一行代码,同样使用itertools:

from itertools import compress, product

def combinations(items):
    return ( set(compress(items,mask)) for mask in product(*[[0,1]]*len(items)) )
    # alternative:                      ...in product([0,1], repeat=len(items)) )

这个答案背后的主要思想是:有2^N种组合——与长度为N的二进制字符串的数量相同。对于每个二进制字符串,您选择与“1”对应的所有元素。

items=abc * mask=###
 |
 V
000 -> 
001 ->   c
010 ->  b
011 ->  bc
100 -> a
101 -> a c
110 -> ab
111 -> abc

需要考虑的事情:

This requires that you can call len(...) on items (workaround: if items is something like an iterable like a generator, turn it into a list first with items=list(_itemsArg)) This requires that the order of iteration on items is not random (workaround: don't be insane) This requires that the items are unique, or else {2,2,1} and {2,1,1} will both collapse to {2,1} (workaround: use collections.Counter as a drop-in replacement for set; it's basically a multiset... though you may need to later use tuple(sorted(Counter(...).elements())) if you need it to be hashable)


Demo

>>> list(combinations(range(4)))
[set(), {3}, {2}, {2, 3}, {1}, {1, 3}, {1, 2}, {1, 2, 3}, {0}, {0, 3}, {0, 2}, {0, 2, 3}, {0, 1}, {0, 1, 3}, {0, 1, 2}, {0, 1, 2, 3}]

>>> list(combinations('abcd'))
[set(), {'d'}, {'c'}, {'c', 'd'}, {'b'}, {'b', 'd'}, {'c', 'b'}, {'c', 'b', 'd'}, {'a'}, {'a', 'd'}, {'a', 'c'}, {'a', 'c', 'd'}, {'a', 'b'}, {'a', 'b', 'd'}, {'a', 'c', 'b'}, {'a', 'c', 'b', 'd'}]