我有一个包含15个数字的列表,我需要编写一些代码来生成这些数字的所有32,768种组合。

我已经找到了一些代码(通过谷歌搜索),显然做了我正在寻找的,但我发现代码相当不透明,并谨慎使用它。而且我觉得肯定有更优雅的解决方案。

我唯一想到的就是循环十进制整数1-32768并将其转换为二进制,并使用二进制表示作为筛选器来挑选适当的数字。

有人知道更好的办法吗?使用map(),也许?


当前回答

下面是itertools.combination的两个实现

返回一个列表的函数

def combinations(lst, depth, start=0, items=[]):
    if depth <= 0:
        return [items]
    out = []
    for i in range(start, len(lst)):
        out += combinations(lst, depth - 1, i + 1, items + [lst[i]])
    return out

一个返回一个生成器

def combinations(lst, depth, start=0, prepend=[]):
    if depth <= 0:
        yield prepend
    else:
        for i in range(start, len(lst)):
            for c in combinations(lst, depth - 1, i + 1, prepend + [lst[i]]):
                yield c

请注意,建议为它们提供一个helper函数,因为prepend参数是静态的,不会随着每次调用而改变

print([c for c in combinations([1, 2, 3, 4], 3)])
# [[1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4]]

# get a hold of prepend
prepend = [c for c in combinations([], -1)][0]
prepend.append(None)

print([c for c in combinations([1, 2, 3, 4], 3)])
# [[None, 1, 2, 3], [None, 1, 2, 4], [None, 1, 3, 4], [None, 2, 3, 4]]

这是一个很肤浅的例子,但小心为妙

其他回答

我喜欢这个问题,因为有很多方法来实现它。我决定为未来创造一个参考答案。

在生产中使用什么?

intertools的文档有一个独立的例子,为什么不在你的代码中使用它呢?一些人建议使用more_itertools。Powerset,但它具有完全相同的实现!如果我是你,我不会为一个小东西安装整个软件包。也许这是最好的方法:

import itertools

def powerset(iterable):
    "powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
    s = list(iterable)
    return itertools.chain.from_iterable(combinations(s, r) for r in range(len(s)+1))

其他可能的方法

方法0:使用组合

import itertools

def subsets(nums):
    result = []
    for i in range(len(nums) + 1):
        result += itertools.combinations(nums, i)
    return result

方法1:简单的递归

def subsets(nums):
    result = []

    def powerset(alist, index, curr):
        if index == len(alist):
            result.append(curr)
            return

        powerset(alist, index + 1, curr + [alist[index]])
        powerset(alist, index + 1, curr)

    powerset(nums, 0, [])
    return result

方法2:回溯

def subsets(nums):
    result = []

    def backtrack(index, curr, k):
        if len(curr) == k:
            result.append(list(curr))
            return
        for i in range(index, len(nums)):
            curr.append(nums[i])
            backtrack(i + 1, curr, k)
            curr.pop()

    for k in range(len(nums) + 1):
        backtrack(0, [], k)
    return result

or

def subsets(nums):
    result = []

    def dfs(nums, index, path, result):
        result.append(path)
        for i in range(index, len(nums)):
            dfs(nums, i + 1, path + [nums[i]], result)

    dfs(nums, 0, [], result)
    return result

方法3:位掩码

def subsets(nums):
    res = []
    n = len(nums)
    for i in range(1 << n):
        aset = []
        for j in range(n):
            value = (1 << j) & i  # value = (i >> j) & 1
            if value:
                aset.append(nums[j])
        res.append(aset)
    return res

或者(不是位掩码,直觉上是2^n个子集)

def subsets(nums):
    subsets = []
    expected_subsets = 2 ** len(nums)

    def generate_subset(subset, nums):
        if len(subsets) >= expected_subsets:
            return
        if len(subsets) < expected_subsets:
            subsets.append(subset)
        for i in range(len(nums)):
            generate_subset(subset + [nums[i]], nums[i + 1:])

    generate_subset([], nums)
    return subsets

方法4:级联

def subsets(nums):
    result = [[]]
    for i in range(len(nums)):
        for j in range(len(result)):
            subset = list(result[j])
            subset.append(nums[i])
            result.append(subset)
    return result
from itertools import combinations


features = ['A', 'B', 'C']
tmp = []
for i in range(len(features)):
    oc = combinations(features, i + 1)
    for c in oc:
        tmp.append(list(c))

输出

[
 ['A'],
 ['B'],
 ['C'],
 ['A', 'B'],
 ['A', 'C'],
 ['B', 'C'],
 ['A', 'B', 'C']
]

如文档中所述

def combinations(iterable, r):
    # combinations('ABCD', 2) --> AB AC AD BC BD CD
    # combinations(range(4), 3) --> 012 013 023 123
    pool = tuple(iterable)
    n = len(pool)
    if r > n:
        return
    indices = list(range(r))
    yield tuple(pool[i] for i in indices)
    while True:
        for i in reversed(range(r)):
            if indices[i] != i + n - r:
                break
        else:
            return
        indices[i] += 1
        for j in range(i+1, r):
            indices[j] = indices[j-1] + 1
        yield tuple(pool[i] for i in indices)


x = [2, 3, 4, 5, 1, 6, 4, 7, 8, 3, 9]
for i in combinations(x, 2):
    print i

来自itertools的组合

import itertools
col_names = ["aa","bb", "cc", "dd"]
all_combinations = itertools.chain(*[itertools.combinations(col_names,i+1) for i,_ in enumerate(col_names)])
print(list(all_combinations))

这种方法可以很容易地移植到所有支持递归的编程语言中(没有itertools,没有yield,没有列表理解):

def combs(a):
    if len(a) == 0:
        return [[]]
    cs = []
    for c in combs(a[1:]):
        cs += [c, c+[a[0]]]
    return cs

>>> combs([1,2,3,4,5])
[[], [1], [2], [2, 1], [3], [3, 1], [3, 2], ..., [5, 4, 3, 2, 1]]