我有一个包含15个数字的列表,我需要编写一些代码来生成这些数字的所有32,768种组合。

我已经找到了一些代码(通过谷歌搜索),显然做了我正在寻找的,但我发现代码相当不透明,并谨慎使用它。而且我觉得肯定有更优雅的解决方案。

我唯一想到的就是循环十进制整数1-32768并将其转换为二进制,并使用二进制表示作为筛选器来挑选适当的数字。

有人知道更好的办法吗?使用map(),也许?


当前回答

3个功能:

列出n个元素的所有组合 列出n个元素的所有组合,其中顺序不明确 所有的排列

import sys

def permutations(a):
    return combinations(a, len(a))

def combinations(a, n):
    if n == 1:
        for x in a:
            yield [x]
    else:
        for i in range(len(a)):
            for x in combinations(a[:i] + a[i+1:], n-1):
                yield [a[i]] + x

def combinationsNoOrder(a, n):
    if n == 1:
        for x in a:
            yield [x]
    else:
        for i in range(len(a)):
            for x in combinationsNoOrder(a[:i], n-1):
                yield [a[i]] + x
    
if __name__ == "__main__":
    for s in combinations(list(map(int, sys.argv[2:])), int(sys.argv[1])):
        print(s)

其他回答

from itertools import combinations


features = ['A', 'B', 'C']
tmp = []
for i in range(len(features)):
    oc = combinations(features, i + 1)
    for c in oc:
        tmp.append(list(c))

输出

[
 ['A'],
 ['B'],
 ['C'],
 ['A', 'B'],
 ['A', 'C'],
 ['B', 'C'],
 ['A', 'B', 'C']
]

这里是另一个解决方案(一行程序),涉及到使用itertools.combination函数,但这里我们使用了双链表理解式(而不是for循环或sum):

def combs(x):
    return [c for i in range(len(x)+1) for c in combinations(x,i)]

演示:

>>> combs([1,2,3,4])
[(), 
 (1,), (2,), (3,), (4,), 
 (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4), 
 (1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4), 
 (1, 2, 3, 4)]

我想我应该为那些寻求答案的人添加这个函数,而不需要导入itertools或任何其他额外的库。

def powerSet(items):
    """
    Power set generator: get all possible combinations of a list’s elements

    Input:
        items is a list
    Output:
        returns 2**n combination lists one at a time using a generator 

    Reference: edx.org 6.00.2x Lecture 2 - Decision Trees and dynamic programming
    """

    N = len(items)
    # enumerate the 2**N possible combinations
    for i in range(2**N):
        combo = []
        for j in range(N):
            # test bit jth of integer i
            if (i >> j) % 2 == 1:
                combo.append(items[j])
        yield combo

简单Yield Generator用法:

for i in powerSet([1,2,3,4]):
    print (i, ", ",  end="")

以上用法示例的输出:

[], [1], [2], [1, 2], [3], [1, 3], [2, 3], [1, 2, 3], [4]. [1, 4], [2, 4], [1, 2, 4], [3, 4], [1, 3, 4], [2, 3, 4], [1, 2, 3, 4],

这种方法可以很容易地移植到所有支持递归的编程语言中(没有itertools,没有yield,没有列表理解):

def combs(a):
    if len(a) == 0:
        return [[]]
    cs = []
    for c in combs(a[1:]):
        cs += [c, c+[a[0]]]
    return cs

>>> combs([1,2,3,4,5])
[[], [1], [2], [2, 1], [3], [3, 1], [3, 2], ..., [5, 4, 3, 2, 1]]

我知道使用itertools来获得所有的组合要实际得多,但是如果你碰巧想要,假设你想要编写很多代码,你可以只使用列表理解来部分实现这一点

对于两对组合:

lambda l: [(a, b) for i, a in enumerate(l) for b in l[i+1:]]

而且,对于三对组合,它是这样简单的:

lambda l: [(a, b, c) for i, a in enumerate(l) for ii, b in enumerate(l[i+1:]) for c in l[i+ii+2:]]

结果和使用itertools.combination是一样的:

import itertools
combs_3 = lambda l: [
    (a, b, c) for i, a in enumerate(l) 
    for ii, b in enumerate(l[i+1:]) 
    for c in l[i+ii+2:]
]
data = ((1, 2), 5, "a", None)
print("A:", list(itertools.combinations(data, 3)))
print("B:", combs_3(data))
# A: [((1, 2), 5, 'a'), ((1, 2), 5, None), ((1, 2), 'a', None), (5, 'a', None)]
# B: [((1, 2), 5, 'a'), ((1, 2), 5, None), ((1, 2), 'a', None), (5, 'a', None)]