我有一个包含15个数字的列表,我需要编写一些代码来生成这些数字的所有32,768种组合。
我已经找到了一些代码(通过谷歌搜索),显然做了我正在寻找的,但我发现代码相当不透明,并谨慎使用它。而且我觉得肯定有更优雅的解决方案。
我唯一想到的就是循环十进制整数1-32768并将其转换为二进制,并使用二进制表示作为筛选器来挑选适当的数字。
有人知道更好的办法吗?使用map(),也许?
我有一个包含15个数字的列表,我需要编写一些代码来生成这些数字的所有32,768种组合。
我已经找到了一些代码(通过谷歌搜索),显然做了我正在寻找的,但我发现代码相当不透明,并谨慎使用它。而且我觉得肯定有更优雅的解决方案。
我唯一想到的就是循环十进制整数1-32768并将其转换为二进制,并使用二进制表示作为筛选器来挑选适当的数字。
有人知道更好的办法吗?使用map(),也许?
当前回答
这段代码采用了一个简单的嵌套列表算法…
# FUNCTION getCombos: To generate all combos of an input list, consider the following sets of nested lists...
#
# [ [ [] ] ]
# [ [ [] ], [ [A] ] ]
# [ [ [] ], [ [A],[B] ], [ [A,B] ] ]
# [ [ [] ], [ [A],[B],[C] ], [ [A,B],[A,C],[B,C] ], [ [A,B,C] ] ]
# [ [ [] ], [ [A],[B],[C],[D] ], [ [A,B],[A,C],[B,C],[A,D],[B,D],[C,D] ], [ [A,B,C],[A,B,D],[A,C,D],[B,C,D] ], [ [A,B,C,D] ] ]
#
# There is a set of lists for each number of items that will occur in a combo (including an empty set).
# For each additional item, begin at the back of the list by adding an empty list, then taking the set of
# lists in the previous column (e.g., in the last list, for sets of 3 items you take the existing set of
# 3-item lists and append to it additional lists created by appending the item (4) to the lists in the
# next smallest item count set. In this case, for the three sets of 2-items in the previous list. Repeat
# for each set of lists back to the initial list containing just the empty list.
#
def getCombos(listIn = ['A','B','C','D','E','F'] ):
listCombos = [ [ [] ] ] # list of lists of combos, seeded with a list containing only the empty list
listSimple = [] # list to contain the final returned list of items (e.g., characters)
for item in listIn:
listCombos.append([]) # append an emtpy list to the end for each new item added
for index in xrange(len(listCombos)-1, 0, -1): # set the index range to work through the list
for listPrev in listCombos[index-1]: # retrieve the lists from the previous column
listCur = listPrev[:] # create a new temporary list object to update
listCur.append(item) # add the item to the previous list to make it current
listCombos[index].append(listCur) # list length and append it to the current list
itemCombo = '' # Create a str to concatenate list items into a str
for item in listCur: # concatenate the members of the lists to create
itemCombo += item # create a string of items
listSimple.append(itemCombo) # add to the final output list
return [listSimple, listCombos]
# END getCombos()
其他回答
flag = 0
requiredCals =12
from itertools import chain, combinations
def powerset(iterable):
s = list(iterable) # allows duplicate elements
return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))
stuff = [2,9,5,1,6]
for i, combo in enumerate(powerset(stuff), 1):
if(len(combo)>0):
#print(combo , sum(combo))
if(sum(combo)== requiredCals):
flag = 1
break
if(flag==1):
print('True')
else:
print('else')
使用列表推导式:
def selfCombine( list2Combine, length ):
listCombined = str( ['list2Combine[i' + str( i ) + ']' for i in range( length )] ).replace( "'", '' ) \
+ 'for i0 in range(len( list2Combine ) )'
if length > 1:
listCombined += str( [' for i' + str( i ) + ' in range( i' + str( i - 1 ) + ', len( list2Combine ) )' for i in range( 1, length )] )\
.replace( "', '", ' ' )\
.replace( "['", '' )\
.replace( "']", '' )
listCombined = '[' + listCombined + ']'
listCombined = eval( listCombined )
return listCombined
list2Combine = ['A', 'B', 'C']
listCombined = selfCombine( list2Combine, 2 )
输出将是:
['A', 'A']
['A', 'B']
['A', 'C']
['B', 'B']
['B', 'C']
['C', 'C']
我喜欢这个问题,因为有很多方法来实现它。我决定为未来创造一个参考答案。
在生产中使用什么?
intertools的文档有一个独立的例子,为什么不在你的代码中使用它呢?一些人建议使用more_itertools。Powerset,但它具有完全相同的实现!如果我是你,我不会为一个小东西安装整个软件包。也许这是最好的方法:
import itertools
def powerset(iterable):
"powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
s = list(iterable)
return itertools.chain.from_iterable(combinations(s, r) for r in range(len(s)+1))
其他可能的方法
方法0:使用组合
import itertools
def subsets(nums):
result = []
for i in range(len(nums) + 1):
result += itertools.combinations(nums, i)
return result
方法1:简单的递归
def subsets(nums):
result = []
def powerset(alist, index, curr):
if index == len(alist):
result.append(curr)
return
powerset(alist, index + 1, curr + [alist[index]])
powerset(alist, index + 1, curr)
powerset(nums, 0, [])
return result
方法2:回溯
def subsets(nums):
result = []
def backtrack(index, curr, k):
if len(curr) == k:
result.append(list(curr))
return
for i in range(index, len(nums)):
curr.append(nums[i])
backtrack(i + 1, curr, k)
curr.pop()
for k in range(len(nums) + 1):
backtrack(0, [], k)
return result
or
def subsets(nums):
result = []
def dfs(nums, index, path, result):
result.append(path)
for i in range(index, len(nums)):
dfs(nums, i + 1, path + [nums[i]], result)
dfs(nums, 0, [], result)
return result
方法3:位掩码
def subsets(nums):
res = []
n = len(nums)
for i in range(1 << n):
aset = []
for j in range(n):
value = (1 << j) & i # value = (i >> j) & 1
if value:
aset.append(nums[j])
res.append(aset)
return res
或者(不是位掩码,直觉上是2^n个子集)
def subsets(nums):
subsets = []
expected_subsets = 2 ** len(nums)
def generate_subset(subset, nums):
if len(subsets) >= expected_subsets:
return
if len(subsets) < expected_subsets:
subsets.append(subset)
for i in range(len(nums)):
generate_subset(subset + [nums[i]], nums[i + 1:])
generate_subset([], nums)
return subsets
方法4:级联
def subsets(nums):
result = [[]]
for i in range(len(nums)):
for j in range(len(result)):
subset = list(result[j])
subset.append(nums[i])
result.append(subset)
return result
下面是一个使用递归的例子:
>>> import copy
>>> def combinations(target,data):
... for i in range(len(data)):
... new_target = copy.copy(target)
... new_data = copy.copy(data)
... new_target.append(data[i])
... new_data = data[i+1:]
... print new_target
... combinations(new_target,
... new_data)
...
...
>>> target = []
>>> data = ['a','b','c','d']
>>>
>>> combinations(target,data)
['a']
['a', 'b']
['a', 'b', 'c']
['a', 'b', 'c', 'd']
['a', 'b', 'd']
['a', 'c']
['a', 'c', 'd']
['a', 'd']
['b']
['b', 'c']
['b', 'c', 'd']
['b', 'd']
['c']
['c', 'd']
['d']
In comments under the highly upvoted answer by @Dan H, mention is made of the powerset() recipe in the itertools documentation—including one by Dan himself. However, so far no one has posted it as an answer. Since it's probably one of the better if not the best approach to the problem—and given a little encouragement from another commenter, it's shown below. The function produces all unique combinations of the list elements of every length possible (including those containing zero and all the elements).
注意:如果略有不同,目标是只获得唯一元素的组合,将s = list(iterable)一行更改为s = list(set(iterable))以消除任何重复的元素。无论如何,iterable最终被转换为列表这一事实意味着它将与生成器一起工作(与其他几个答案不同)。
from itertools import chain, combinations
def powerset(iterable):
"powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
s = list(iterable) # allows duplicate elements
return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))
stuff = [1, 2, 3]
for i, combo in enumerate(powerset(stuff), 1):
print('combo #{}: {}'.format(i, combo))
输出:
combo #1: ()
combo #2: (1,)
combo #3: (2,)
combo #4: (3,)
combo #5: (1, 2)
combo #6: (1, 3)
combo #7: (2, 3)
combo #8: (1, 2, 3)