我有一个包含15个数字的列表,我需要编写一些代码来生成这些数字的所有32,768种组合。
我已经找到了一些代码(通过谷歌搜索),显然做了我正在寻找的,但我发现代码相当不透明,并谨慎使用它。而且我觉得肯定有更优雅的解决方案。
我唯一想到的就是循环十进制整数1-32768并将其转换为二进制,并使用二进制表示作为筛选器来挑选适当的数字。
有人知道更好的办法吗?使用map(),也许?
我有一个包含15个数字的列表,我需要编写一些代码来生成这些数字的所有32,768种组合。
我已经找到了一些代码(通过谷歌搜索),显然做了我正在寻找的,但我发现代码相当不透明,并谨慎使用它。而且我觉得肯定有更优雅的解决方案。
我唯一想到的就是循环十进制整数1-32768并将其转换为二进制,并使用二进制表示作为筛选器来挑选适当的数字。
有人知道更好的办法吗?使用map(),也许?
当前回答
flag = 0
requiredCals =12
from itertools import chain, combinations
def powerset(iterable):
s = list(iterable) # allows duplicate elements
return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))
stuff = [2,9,5,1,6]
for i, combo in enumerate(powerset(stuff), 1):
if(len(combo)>0):
#print(combo , sum(combo))
if(sum(combo)== requiredCals):
flag = 1
break
if(flag==1):
print('True')
else:
print('else')
其他回答
还可以使用more_itertools包中的powerset函数。
from more_itertools import powerset
l = [1,2,3]
list(powerset(l))
# [(), (1,), (2,), (3,), (1, 2), (1, 3), (2, 3), (1, 2, 3)]
我们也可以验证,它满足OP的要求
from more_itertools import ilen
assert ilen(powerset(range(15))) == 32_768
我想我应该为那些寻求答案的人添加这个函数,而不需要导入itertools或任何其他额外的库。
def powerSet(items):
"""
Power set generator: get all possible combinations of a list’s elements
Input:
items is a list
Output:
returns 2**n combination lists one at a time using a generator
Reference: edx.org 6.00.2x Lecture 2 - Decision Trees and dynamic programming
"""
N = len(items)
# enumerate the 2**N possible combinations
for i in range(2**N):
combo = []
for j in range(N):
# test bit jth of integer i
if (i >> j) % 2 == 1:
combo.append(items[j])
yield combo
简单Yield Generator用法:
for i in powerSet([1,2,3,4]):
print (i, ", ", end="")
以上用法示例的输出:
[], [1], [2], [1, 2], [3], [1, 3], [2, 3], [1, 2, 3], [4]. [1, 4], [2, 4], [1, 2, 4], [3, 4], [1, 3, 4], [2, 3, 4], [1, 2, 3, 4],
from itertools import combinations
features = ['A', 'B', 'C']
tmp = []
for i in range(len(features)):
oc = combinations(features, i + 1)
for c in oc:
tmp.append(list(c))
输出
[
['A'],
['B'],
['C'],
['A', 'B'],
['A', 'C'],
['B', 'C'],
['A', 'B', 'C']
]
使用列表推导式:
def selfCombine( list2Combine, length ):
listCombined = str( ['list2Combine[i' + str( i ) + ']' for i in range( length )] ).replace( "'", '' ) \
+ 'for i0 in range(len( list2Combine ) )'
if length > 1:
listCombined += str( [' for i' + str( i ) + ' in range( i' + str( i - 1 ) + ', len( list2Combine ) )' for i in range( 1, length )] )\
.replace( "', '", ' ' )\
.replace( "['", '' )\
.replace( "']", '' )
listCombined = '[' + listCombined + ']'
listCombined = eval( listCombined )
return listCombined
list2Combine = ['A', 'B', 'C']
listCombined = selfCombine( list2Combine, 2 )
输出将是:
['A', 'A']
['A', 'B']
['A', 'C']
['B', 'B']
['B', 'C']
['C', 'C']
下面是一个使用递归的例子:
>>> import copy
>>> def combinations(target,data):
... for i in range(len(data)):
... new_target = copy.copy(target)
... new_data = copy.copy(data)
... new_target.append(data[i])
... new_data = data[i+1:]
... print new_target
... combinations(new_target,
... new_data)
...
...
>>> target = []
>>> data = ['a','b','c','d']
>>>
>>> combinations(target,data)
['a']
['a', 'b']
['a', 'b', 'c']
['a', 'b', 'c', 'd']
['a', 'b', 'd']
['a', 'c']
['a', 'c', 'd']
['a', 'd']
['b']
['b', 'c']
['b', 'c', 'd']
['b', 'd']
['c']
['c', 'd']
['d']