我有一个包含15个数字的列表,我需要编写一些代码来生成这些数字的所有32,768种组合。

我已经找到了一些代码(通过谷歌搜索),显然做了我正在寻找的,但我发现代码相当不透明,并谨慎使用它。而且我觉得肯定有更优雅的解决方案。

我唯一想到的就是循环十进制整数1-32768并将其转换为二进制,并使用二进制表示作为筛选器来挑选适当的数字。

有人知道更好的办法吗?使用map(),也许?


当前回答

我想我应该为那些寻求答案的人添加这个函数,而不需要导入itertools或任何其他额外的库。

def powerSet(items):
    """
    Power set generator: get all possible combinations of a list’s elements

    Input:
        items is a list
    Output:
        returns 2**n combination lists one at a time using a generator 

    Reference: edx.org 6.00.2x Lecture 2 - Decision Trees and dynamic programming
    """

    N = len(items)
    # enumerate the 2**N possible combinations
    for i in range(2**N):
        combo = []
        for j in range(N):
            # test bit jth of integer i
            if (i >> j) % 2 == 1:
                combo.append(items[j])
        yield combo

简单Yield Generator用法:

for i in powerSet([1,2,3,4]):
    print (i, ", ",  end="")

以上用法示例的输出:

[], [1], [2], [1, 2], [3], [1, 3], [2, 3], [1, 2, 3], [4]. [1, 4], [2, 4], [1, 2, 4], [3, 4], [1, 3, 4], [2, 3, 4], [1, 2, 3, 4],

其他回答

看看itertools.combination:

itertools.combinations (iterable, r) 返回元素的r长度子序列 输入迭代对象。 组合是按字典排序顺序发出的。那么,如果 Input iterable已排序,则 组合元组将在 排序顺序。

从2.6开始,电池包括在内!

这个答案漏掉了一个方面:OP要求所有的组合……不仅仅是长度为r的组合。

所以你要么要遍历所有长度为L的循环:

import itertools

stuff = [1, 2, 3]
for L in range(len(stuff) + 1):
    for subset in itertools.combinations(stuff, L):
        print(subset)

或者——如果你想变得时髦(或者让那些在你之后阅读你的代码的人动脑筋)——你可以生成“组合()”生成器链,并遍历它:

from itertools import chain, combinations
def all_subsets(ss):
    return chain(*map(lambda x: combinations(ss, x), range(0, len(ss)+1)))

for subset in all_subsets(stuff):
    print(subset)

这是我的实现

def get_combinations(list_of_things):
"""gets every combination of things in a list returned as a list of lists

Should be read : add all combinations of a certain size to the end of a list for every possible size in the
the list_of_things.

"""
list_of_combinations = [list(combinations_of_a_certain_size)
                        for possible_size_of_combinations in range(1,  len(list_of_things))
                        for combinations_of_a_certain_size in itertools.combinations(list_of_things,
                                                                                     possible_size_of_combinations)]
return list_of_combinations

正如James Brady提到的,你的itertools.combination是一个键。但这并不是一个完整的解决方案。

解决方案1

import itertools
def all(lst):
    # ci is a bitmask which denotes particular combination,
    # see explanation below
    for ci in range(1, 2**len(lst)):
        yield tuple(itertools.compress(
            lst,
            [ci & (1<<k) for k in  range(0, len(lst))]
        ))

解决方案2

import itertools
def all_combs(lst):
    for r in range(1, len(lst)+1):
        for comb in itertools.combinations(lst, r):
            yield comb

例子

>>> list(all_combs([1,2,3]))
[(1,), (2,), (3,), (1, 2), (1, 3), (2, 3), (1, 2, 3)]
>>> len(list(all_combs([1,2,3])))
7
>>> len(list(all_combs(range(0, 15))))
32767
>>> list(all([1,2,3]))
[(1,), (2,), (1, 2), (3,), (1, 3), (2, 3), (1, 2, 3)]
>>> len(list(all(range(15))))
32767

解释

假设数组A的长度为N,让长度为N的位掩码B表示一个特定的组合C。如果B[i]是1,那么A[i]属于组合C。

方案1说明

所以我们可以遍历所有的位掩码并用这个位掩码过滤源数组A,这可以通过itertools。compress来完成。

方案2说明

...或者,我们可以用组合来表示

现在我们需要考虑这样的情况,当B中只有一个1,然后只有两个1,等等。每种情况都属于特定的组合。 因此,一旦我们组合所有的组合集,我们将得到所有的子序列。

同样,很明显,在这种情况下,所有可能的组合的数量是2^N - 1。当所有B[i]都为零时,我们省略大小写,因为我们假设空集不是一个组合。否则,就不要减去1。

不使用itertools:

def combine(inp):
    return combine_helper(inp, [], [])


def combine_helper(inp, temp, ans):
    for i in range(len(inp)):
        current = inp[i]
        remaining = inp[i + 1:]
        temp.append(current)
        ans.append(tuple(temp))
        combine_helper(remaining, temp, ans)
        temp.pop()
    return ans


print(combine(['a', 'b', 'c', 'd']))