我有一个包含15个数字的列表,我需要编写一些代码来生成这些数字的所有32,768种组合。

我已经找到了一些代码(通过谷歌搜索),显然做了我正在寻找的,但我发现代码相当不透明,并谨慎使用它。而且我觉得肯定有更优雅的解决方案。

我唯一想到的就是循环十进制整数1-32768并将其转换为二进制,并使用二进制表示作为筛选器来挑选适当的数字。

有人知道更好的办法吗?使用map(),也许?


当前回答

如文档中所述

def combinations(iterable, r):
    # combinations('ABCD', 2) --> AB AC AD BC BD CD
    # combinations(range(4), 3) --> 012 013 023 123
    pool = tuple(iterable)
    n = len(pool)
    if r > n:
        return
    indices = list(range(r))
    yield tuple(pool[i] for i in indices)
    while True:
        for i in reversed(range(r)):
            if indices[i] != i + n - r:
                break
        else:
            return
        indices[i] += 1
        for j in range(i+1, r):
            indices[j] = indices[j-1] + 1
        yield tuple(pool[i] for i in indices)


x = [2, 3, 4, 5, 1, 6, 4, 7, 8, 3, 9]
for i in combinations(x, 2):
    print i

其他回答

我喜欢这个问题,因为有很多方法来实现它。我决定为未来创造一个参考答案。

在生产中使用什么?

intertools的文档有一个独立的例子,为什么不在你的代码中使用它呢?一些人建议使用more_itertools。Powerset,但它具有完全相同的实现!如果我是你,我不会为一个小东西安装整个软件包。也许这是最好的方法:

import itertools

def powerset(iterable):
    "powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
    s = list(iterable)
    return itertools.chain.from_iterable(combinations(s, r) for r in range(len(s)+1))

其他可能的方法

方法0:使用组合

import itertools

def subsets(nums):
    result = []
    for i in range(len(nums) + 1):
        result += itertools.combinations(nums, i)
    return result

方法1:简单的递归

def subsets(nums):
    result = []

    def powerset(alist, index, curr):
        if index == len(alist):
            result.append(curr)
            return

        powerset(alist, index + 1, curr + [alist[index]])
        powerset(alist, index + 1, curr)

    powerset(nums, 0, [])
    return result

方法2:回溯

def subsets(nums):
    result = []

    def backtrack(index, curr, k):
        if len(curr) == k:
            result.append(list(curr))
            return
        for i in range(index, len(nums)):
            curr.append(nums[i])
            backtrack(i + 1, curr, k)
            curr.pop()

    for k in range(len(nums) + 1):
        backtrack(0, [], k)
    return result

or

def subsets(nums):
    result = []

    def dfs(nums, index, path, result):
        result.append(path)
        for i in range(index, len(nums)):
            dfs(nums, i + 1, path + [nums[i]], result)

    dfs(nums, 0, [], result)
    return result

方法3:位掩码

def subsets(nums):
    res = []
    n = len(nums)
    for i in range(1 << n):
        aset = []
        for j in range(n):
            value = (1 << j) & i  # value = (i >> j) & 1
            if value:
                aset.append(nums[j])
        res.append(aset)
    return res

或者(不是位掩码,直觉上是2^n个子集)

def subsets(nums):
    subsets = []
    expected_subsets = 2 ** len(nums)

    def generate_subset(subset, nums):
        if len(subsets) >= expected_subsets:
            return
        if len(subsets) < expected_subsets:
            subsets.append(subset)
        for i in range(len(nums)):
            generate_subset(subset + [nums[i]], nums[i + 1:])

    generate_subset([], nums)
    return subsets

方法4:级联

def subsets(nums):
    result = [[]]
    for i in range(len(nums)):
        for j in range(len(result)):
            subset = list(result[j])
            subset.append(nums[i])
            result.append(subset)
    return result

我知道使用itertools来获得所有的组合要实际得多,但是如果你碰巧想要,假设你想要编写很多代码,你可以只使用列表理解来部分实现这一点

对于两对组合:

lambda l: [(a, b) for i, a in enumerate(l) for b in l[i+1:]]

而且,对于三对组合,它是这样简单的:

lambda l: [(a, b, c) for i, a in enumerate(l) for ii, b in enumerate(l[i+1:]) for c in l[i+ii+2:]]

结果和使用itertools.combination是一样的:

import itertools
combs_3 = lambda l: [
    (a, b, c) for i, a in enumerate(l) 
    for ii, b in enumerate(l[i+1:]) 
    for c in l[i+ii+2:]
]
data = ((1, 2), 5, "a", None)
print("A:", list(itertools.combinations(data, 3)))
print("B:", combs_3(data))
# A: [((1, 2), 5, 'a'), ((1, 2), 5, None), ((1, 2), 'a', None), (5, 'a', None)]
# B: [((1, 2), 5, 'a'), ((1, 2), 5, None), ((1, 2), 'a', None), (5, 'a', None)]

3个功能:

列出n个元素的所有组合 列出n个元素的所有组合,其中顺序不明确 所有的排列

import sys

def permutations(a):
    return combinations(a, len(a))

def combinations(a, n):
    if n == 1:
        for x in a:
            yield [x]
    else:
        for i in range(len(a)):
            for x in combinations(a[:i] + a[i+1:], n-1):
                yield [a[i]] + x

def combinationsNoOrder(a, n):
    if n == 1:
        for x in a:
            yield [x]
    else:
        for i in range(len(a)):
            for x in combinationsNoOrder(a[:i], n-1):
                yield [a[i]] + x
    
if __name__ == "__main__":
    for s in combinations(list(map(int, sys.argv[2:])), int(sys.argv[1])):
        print(s)

还可以使用more_itertools包中的powerset函数。

from more_itertools import powerset

l = [1,2,3]
list(powerset(l))

# [(), (1,), (2,), (3,), (1, 2), (1, 3), (2, 3), (1, 2, 3)]

我们也可以验证,它满足OP的要求

from more_itertools import ilen

assert ilen(powerset(range(15))) == 32_768

我同意Dan H的观点,Ben确实要求所有的组合。itertools.combination()不会给出所有的组合。

另一个问题是,如果输入iterable很大,返回一个生成器而不是列表中的所有内容可能会更好:

iterable = range(10)
for s in xrange(len(iterable)+1):
  for comb in itertools.combinations(iterable, s):
    yield comb