我有一个包含15个数字的列表,我需要编写一些代码来生成这些数字的所有32,768种组合。

我已经找到了一些代码(通过谷歌搜索),显然做了我正在寻找的,但我发现代码相当不透明,并谨慎使用它。而且我觉得肯定有更优雅的解决方案。

我唯一想到的就是循环十进制整数1-32768并将其转换为二进制,并使用二进制表示作为筛选器来挑选适当的数字。

有人知道更好的办法吗?使用map(),也许?


当前回答

正如James Brady提到的,你的itertools.combination是一个键。但这并不是一个完整的解决方案。

解决方案1

import itertools
def all(lst):
    # ci is a bitmask which denotes particular combination,
    # see explanation below
    for ci in range(1, 2**len(lst)):
        yield tuple(itertools.compress(
            lst,
            [ci & (1<<k) for k in  range(0, len(lst))]
        ))

解决方案2

import itertools
def all_combs(lst):
    for r in range(1, len(lst)+1):
        for comb in itertools.combinations(lst, r):
            yield comb

例子

>>> list(all_combs([1,2,3]))
[(1,), (2,), (3,), (1, 2), (1, 3), (2, 3), (1, 2, 3)]
>>> len(list(all_combs([1,2,3])))
7
>>> len(list(all_combs(range(0, 15))))
32767
>>> list(all([1,2,3]))
[(1,), (2,), (1, 2), (3,), (1, 3), (2, 3), (1, 2, 3)]
>>> len(list(all(range(15))))
32767

解释

假设数组A的长度为N,让长度为N的位掩码B表示一个特定的组合C。如果B[i]是1,那么A[i]属于组合C。

方案1说明

所以我们可以遍历所有的位掩码并用这个位掩码过滤源数组A,这可以通过itertools。compress来完成。

方案2说明

...或者,我们可以用组合来表示

现在我们需要考虑这样的情况,当B中只有一个1,然后只有两个1,等等。每种情况都属于特定的组合。 因此,一旦我们组合所有的组合集,我们将得到所有的子序列。

同样,很明显,在这种情况下,所有可能的组合的数量是2^N - 1。当所有B[i]都为零时,我们省略大小写,因为我们假设空集不是一个组合。否则,就不要减去1。

其他回答

这里是另一个解决方案(一行程序),涉及到使用itertools.combination函数,但这里我们使用了双链表理解式(而不是for循环或sum):

def combs(x):
    return [c for i in range(len(x)+1) for c in combinations(x,i)]

演示:

>>> combs([1,2,3,4])
[(), 
 (1,), (2,), (3,), (4,), 
 (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4), 
 (1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4), 
 (1, 2, 3, 4)]

在Python 3中没有itertools,你可以这样做:

def combinations(arr, carry):
    for i in range(len(arr)):
        yield carry + arr[i]
        yield from combinations(arr[i + 1:], carry + arr[i])

其中最初的carry = ""。

下面是一个使用递归的例子:

>>> import copy
>>> def combinations(target,data):
...     for i in range(len(data)):
...         new_target = copy.copy(target)
...         new_data = copy.copy(data)
...         new_target.append(data[i])
...         new_data = data[i+1:]
...         print new_target
...         combinations(new_target,
...                      new_data)
...                      
... 
>>> target = []
>>> data = ['a','b','c','d']
>>> 
>>> combinations(target,data)
['a']
['a', 'b']
['a', 'b', 'c']
['a', 'b', 'c', 'd']
['a', 'b', 'd']
['a', 'c']
['a', 'c', 'd']
['a', 'd']
['b']
['b', 'c']
['b', 'c', 'd']
['b', 'd']
['c']
['c', 'd']
['d']

你可以使用以下简单的代码在Python中生成列表的所有组合:

import itertools

a = [1,2,3,4]
for i in xrange(0,len(a)+1):
   print list(itertools.combinations(a,i))

结果将是:

[()]
[(1,), (2,), (3,), (4,)]
[(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]
[(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]
[(1, 2, 3, 4)]
from itertools import combinations


features = ['A', 'B', 'C']
tmp = []
for i in range(len(features)):
    oc = combinations(features, i + 1)
    for c in oc:
        tmp.append(list(c))

输出

[
 ['A'],
 ['B'],
 ['C'],
 ['A', 'B'],
 ['A', 'C'],
 ['B', 'C'],
 ['A', 'B', 'C']
]