我有一个包含15个数字的列表,我需要编写一些代码来生成这些数字的所有32,768种组合。
我已经找到了一些代码(通过谷歌搜索),显然做了我正在寻找的,但我发现代码相当不透明,并谨慎使用它。而且我觉得肯定有更优雅的解决方案。
我唯一想到的就是循环十进制整数1-32768并将其转换为二进制,并使用二进制表示作为筛选器来挑选适当的数字。
有人知道更好的办法吗?使用map(),也许?
我有一个包含15个数字的列表,我需要编写一些代码来生成这些数字的所有32,768种组合。
我已经找到了一些代码(通过谷歌搜索),显然做了我正在寻找的,但我发现代码相当不透明,并谨慎使用它。而且我觉得肯定有更优雅的解决方案。
我唯一想到的就是循环十进制整数1-32768并将其转换为二进制,并使用二进制表示作为筛选器来挑选适当的数字。
有人知道更好的办法吗?使用map(),也许?
当前回答
下面是一个使用递归的例子:
>>> import copy
>>> def combinations(target,data):
... for i in range(len(data)):
... new_target = copy.copy(target)
... new_data = copy.copy(data)
... new_target.append(data[i])
... new_data = data[i+1:]
... print new_target
... combinations(new_target,
... new_data)
...
...
>>> target = []
>>> data = ['a','b','c','d']
>>>
>>> combinations(target,data)
['a']
['a', 'b']
['a', 'b', 'c']
['a', 'b', 'c', 'd']
['a', 'b', 'd']
['a', 'c']
['a', 'c', 'd']
['a', 'd']
['b']
['b', 'c']
['b', 'c', 'd']
['b', 'd']
['c']
['c', 'd']
['d']
其他回答
这个答案漏掉了一个方面:OP要求所有的组合……不仅仅是长度为r的组合。
所以你要么要遍历所有长度为L的循环:
import itertools
stuff = [1, 2, 3]
for L in range(len(stuff) + 1):
for subset in itertools.combinations(stuff, L):
print(subset)
或者——如果你想变得时髦(或者让那些在你之后阅读你的代码的人动脑筋)——你可以生成“组合()”生成器链,并遍历它:
from itertools import chain, combinations
def all_subsets(ss):
return chain(*map(lambda x: combinations(ss, x), range(0, len(ss)+1)))
for subset in all_subsets(stuff):
print(subset)
下面是一个使用递归的例子:
>>> import copy
>>> def combinations(target,data):
... for i in range(len(data)):
... new_target = copy.copy(target)
... new_data = copy.copy(data)
... new_target.append(data[i])
... new_data = data[i+1:]
... print new_target
... combinations(new_target,
... new_data)
...
...
>>> target = []
>>> data = ['a','b','c','d']
>>>
>>> combinations(target,data)
['a']
['a', 'b']
['a', 'b', 'c']
['a', 'b', 'c', 'd']
['a', 'b', 'd']
['a', 'c']
['a', 'c', 'd']
['a', 'd']
['b']
['b', 'c']
['b', 'c', 'd']
['b', 'd']
['c']
['c', 'd']
['d']
下面是一个“标准递归答案”,类似于其他类似的答案https://stackoverflow.com/a/23743696/711085。(实际上,我们不必担心耗尽堆栈空间,因为我们没有办法处理所有N!排列)。
它依次访问每个元素,要么取它,要么离开它(从这个算法中我们可以直接看到2^N的基数)。
def combs(xs, i=0):
if i==len(xs):
yield ()
return
for c in combs(xs,i+1):
yield c
yield c+(xs[i],)
演示:
>>> list( combs(range(5)) )
[(), (0,), (1,), (1, 0), (2,), (2, 0), (2, 1), (2, 1, 0), (3,), (3, 0), (3, 1), (3, 1, 0), (3, 2), (3, 2, 0), (3, 2, 1), (3, 2, 1, 0), (4,), (4, 0), (4, 1), (4, 1, 0), (4, 2), (4, 2, 0), (4, 2, 1), (4, 2, 1, 0), (4, 3), (4, 3, 0), (4, 3, 1), (4, 3, 1, 0), (4, 3, 2), (4, 3, 2, 0), (4, 3, 2, 1), (4, 3, 2, 1, 0)]
>>> list(sorted( combs(range(5)), key=len))
[(),
(0,), (1,), (2,), (3,), (4,),
(1, 0), (2, 0), (2, 1), (3, 0), (3, 1), (3, 2), (4, 0), (4, 1), (4, 2), (4, 3),
(2, 1, 0), (3, 1, 0), (3, 2, 0), (3, 2, 1), (4, 1, 0), (4, 2, 0), (4, 2, 1), (4, 3, 0), (4, 3, 1), (4, 3, 2),
(3, 2, 1, 0), (4, 2, 1, 0), (4, 3, 1, 0), (4, 3, 2, 0), (4, 3, 2, 1),
(4, 3, 2, 1, 0)]
>>> len(set(combs(range(5))))
32
我知道使用itertools来获得所有的组合要实际得多,但是如果你碰巧想要,假设你想要编写很多代码,你可以只使用列表理解来部分实现这一点
对于两对组合:
lambda l: [(a, b) for i, a in enumerate(l) for b in l[i+1:]]
而且,对于三对组合,它是这样简单的:
lambda l: [(a, b, c) for i, a in enumerate(l) for ii, b in enumerate(l[i+1:]) for c in l[i+ii+2:]]
结果和使用itertools.combination是一样的:
import itertools
combs_3 = lambda l: [
(a, b, c) for i, a in enumerate(l)
for ii, b in enumerate(l[i+1:])
for c in l[i+ii+2:]
]
data = ((1, 2), 5, "a", None)
print("A:", list(itertools.combinations(data, 3)))
print("B:", combs_3(data))
# A: [((1, 2), 5, 'a'), ((1, 2), 5, None), ((1, 2), 'a', None), (5, 'a', None)]
# B: [((1, 2), 5, 'a'), ((1, 2), 5, None), ((1, 2), 'a', None), (5, 'a', None)]
如果你不想使用组合库,这里是解决方案:
nums = [1,2,3]
p = [[]]
fnl = [[],nums]
for i in range(len(nums)):
for j in range(i+1,len(nums)):
p[-1].append([i,j])
for i in range(len(nums)-3):
p.append([])
for m in p[-2]:
p[-1].append(m+[m[-1]+1])
for i in p:
for j in i:
n = []
for m in j:
if m < len(nums):
n.append(nums[m])
if n not in fnl:
fnl.append(n)
for i in nums:
if [i] not in fnl:
fnl.append([i])
print(fnl)
输出:
[[], [1, 2, 3], [1, 2], [1, 3], [2, 3], [1], [2], [3]]