我有一个包含15个数字的列表,我需要编写一些代码来生成这些数字的所有32,768种组合。
我已经找到了一些代码(通过谷歌搜索),显然做了我正在寻找的,但我发现代码相当不透明,并谨慎使用它。而且我觉得肯定有更优雅的解决方案。
我唯一想到的就是循环十进制整数1-32768并将其转换为二进制,并使用二进制表示作为筛选器来挑选适当的数字。
有人知道更好的办法吗?使用map(),也许?
我有一个包含15个数字的列表,我需要编写一些代码来生成这些数字的所有32,768种组合。
我已经找到了一些代码(通过谷歌搜索),显然做了我正在寻找的,但我发现代码相当不透明,并谨慎使用它。而且我觉得肯定有更优雅的解决方案。
我唯一想到的就是循环十进制整数1-32768并将其转换为二进制,并使用二进制表示作为筛选器来挑选适当的数字。
有人知道更好的办法吗?使用map(),也许?
当前回答
如果你不想使用组合库,这里是解决方案:
nums = [1,2,3]
p = [[]]
fnl = [[],nums]
for i in range(len(nums)):
for j in range(i+1,len(nums)):
p[-1].append([i,j])
for i in range(len(nums)-3):
p.append([])
for m in p[-2]:
p[-1].append(m+[m[-1]+1])
for i in p:
for j in i:
n = []
for m in j:
if m < len(nums):
n.append(nums[m])
if n not in fnl:
fnl.append(n)
for i in nums:
if [i] not in fnl:
fnl.append([i])
print(fnl)
输出:
[[], [1, 2, 3], [1, 2], [1, 3], [2, 3], [1], [2], [3]]
其他回答
我喜欢这个问题,因为有很多方法来实现它。我决定为未来创造一个参考答案。
在生产中使用什么?
intertools的文档有一个独立的例子,为什么不在你的代码中使用它呢?一些人建议使用more_itertools。Powerset,但它具有完全相同的实现!如果我是你,我不会为一个小东西安装整个软件包。也许这是最好的方法:
import itertools
def powerset(iterable):
"powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
s = list(iterable)
return itertools.chain.from_iterable(combinations(s, r) for r in range(len(s)+1))
其他可能的方法
方法0:使用组合
import itertools
def subsets(nums):
result = []
for i in range(len(nums) + 1):
result += itertools.combinations(nums, i)
return result
方法1:简单的递归
def subsets(nums):
result = []
def powerset(alist, index, curr):
if index == len(alist):
result.append(curr)
return
powerset(alist, index + 1, curr + [alist[index]])
powerset(alist, index + 1, curr)
powerset(nums, 0, [])
return result
方法2:回溯
def subsets(nums):
result = []
def backtrack(index, curr, k):
if len(curr) == k:
result.append(list(curr))
return
for i in range(index, len(nums)):
curr.append(nums[i])
backtrack(i + 1, curr, k)
curr.pop()
for k in range(len(nums) + 1):
backtrack(0, [], k)
return result
or
def subsets(nums):
result = []
def dfs(nums, index, path, result):
result.append(path)
for i in range(index, len(nums)):
dfs(nums, i + 1, path + [nums[i]], result)
dfs(nums, 0, [], result)
return result
方法3:位掩码
def subsets(nums):
res = []
n = len(nums)
for i in range(1 << n):
aset = []
for j in range(n):
value = (1 << j) & i # value = (i >> j) & 1
if value:
aset.append(nums[j])
res.append(aset)
return res
或者(不是位掩码,直觉上是2^n个子集)
def subsets(nums):
subsets = []
expected_subsets = 2 ** len(nums)
def generate_subset(subset, nums):
if len(subsets) >= expected_subsets:
return
if len(subsets) < expected_subsets:
subsets.append(subset)
for i in range(len(nums)):
generate_subset(subset + [nums[i]], nums[i + 1:])
generate_subset([], nums)
return subsets
方法4:级联
def subsets(nums):
result = [[]]
for i in range(len(nums)):
for j in range(len(result)):
subset = list(result[j])
subset.append(nums[i])
result.append(subset)
return result
如文档中所述
def combinations(iterable, r):
# combinations('ABCD', 2) --> AB AC AD BC BD CD
# combinations(range(4), 3) --> 012 013 023 123
pool = tuple(iterable)
n = len(pool)
if r > n:
return
indices = list(range(r))
yield tuple(pool[i] for i in indices)
while True:
for i in reversed(range(r)):
if indices[i] != i + n - r:
break
else:
return
indices[i] += 1
for j in range(i+1, r):
indices[j] = indices[j-1] + 1
yield tuple(pool[i] for i in indices)
x = [2, 3, 4, 5, 1, 6, 4, 7, 8, 3, 9]
for i in combinations(x, 2):
print i
你可以使用以下简单的代码在Python中生成列表的所有组合:
import itertools
a = [1,2,3,4]
for i in xrange(0,len(a)+1):
print list(itertools.combinations(a,i))
结果将是:
[()]
[(1,), (2,), (3,), (4,)]
[(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]
[(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]
[(1, 2, 3, 4)]
如果有人正在寻找一个反向列表,就像我一样:
stuff = [1, 2, 3, 4]
def reverse(bla, y):
for subset in itertools.combinations(bla, len(bla)-y):
print list(subset)
if y != len(bla):
y += 1
reverse(bla, y)
reverse(stuff, 1)
我想我应该为那些寻求答案的人添加这个函数,而不需要导入itertools或任何其他额外的库。
def powerSet(items):
"""
Power set generator: get all possible combinations of a list’s elements
Input:
items is a list
Output:
returns 2**n combination lists one at a time using a generator
Reference: edx.org 6.00.2x Lecture 2 - Decision Trees and dynamic programming
"""
N = len(items)
# enumerate the 2**N possible combinations
for i in range(2**N):
combo = []
for j in range(N):
# test bit jth of integer i
if (i >> j) % 2 == 1:
combo.append(items[j])
yield combo
简单Yield Generator用法:
for i in powerSet([1,2,3,4]):
print (i, ", ", end="")
以上用法示例的输出:
[], [1], [2], [1, 2], [3], [1, 3], [2, 3], [1, 2, 3], [4]. [1, 4], [2, 4], [1, 2, 4], [3, 4], [1, 3, 4], [2, 3, 4], [1, 2, 3, 4],