我有一个包含15个数字的列表,我需要编写一些代码来生成这些数字的所有32,768种组合。

我已经找到了一些代码(通过谷歌搜索),显然做了我正在寻找的,但我发现代码相当不透明,并谨慎使用它。而且我觉得肯定有更优雅的解决方案。

我唯一想到的就是循环十进制整数1-32768并将其转换为二进制,并使用二进制表示作为筛选器来挑选适当的数字。

有人知道更好的办法吗?使用map(),也许?


当前回答

还可以使用more_itertools包中的powerset函数。

from more_itertools import powerset

l = [1,2,3]
list(powerset(l))

# [(), (1,), (2,), (3,), (1, 2), (1, 3), (2, 3), (1, 2, 3)]

我们也可以验证,它满足OP的要求

from more_itertools import ilen

assert ilen(powerset(range(15))) == 32_768

其他回答

这个怎么样?使用字符串而不是列表,但同样的事情..string可以像Python中的列表一样处理:

def comb(s, res):
    if not s: return
    res.add(s)
    for i in range(0, len(s)):
        t = s[0:i] + s[i + 1:]
        comb(t, res)

res = set()
comb('game', res) 

print(res)

这种方法可以很容易地移植到所有支持递归的编程语言中(没有itertools,没有yield,没有列表理解):

def combs(a):
    if len(a) == 0:
        return [[]]
    cs = []
    for c in combs(a[1:]):
        cs += [c, c+[a[0]]]
    return cs

>>> combs([1,2,3,4,5])
[[], [1], [2], [2, 1], [3], [3, 1], [3, 2], ..., [5, 4, 3, 2, 1]]

这一行代码给出了所有的组合(如果原始列表/set包含n个不同的元素,则在0到n个元素之间),并使用本机方法itertools.combination:

Python 2

from itertools import combinations

input = ['a', 'b', 'c', 'd']

output = sum([map(list, combinations(input, i)) for i in range(len(input) + 1)], [])

Python 3

from itertools import combinations

input = ['a', 'b', 'c', 'd']

output = sum([list(map(list, combinations(input, i))) for i in range(len(input) + 1)], [])

输出将是:

[[],
 ['a'],
 ['b'],
 ['c'],
 ['d'],
 ['a', 'b'],
 ['a', 'c'],
 ['a', 'd'],
 ['b', 'c'],
 ['b', 'd'],
 ['c', 'd'],
 ['a', 'b', 'c'],
 ['a', 'b', 'd'],
 ['a', 'c', 'd'],
 ['b', 'c', 'd'],
 ['a', 'b', 'c', 'd']]

在网上试试吧:

http://ideone.com/COghfX

正如James Brady提到的,你的itertools.combination是一个键。但这并不是一个完整的解决方案。

解决方案1

import itertools
def all(lst):
    # ci is a bitmask which denotes particular combination,
    # see explanation below
    for ci in range(1, 2**len(lst)):
        yield tuple(itertools.compress(
            lst,
            [ci & (1<<k) for k in  range(0, len(lst))]
        ))

解决方案2

import itertools
def all_combs(lst):
    for r in range(1, len(lst)+1):
        for comb in itertools.combinations(lst, r):
            yield comb

例子

>>> list(all_combs([1,2,3]))
[(1,), (2,), (3,), (1, 2), (1, 3), (2, 3), (1, 2, 3)]
>>> len(list(all_combs([1,2,3])))
7
>>> len(list(all_combs(range(0, 15))))
32767
>>> list(all([1,2,3]))
[(1,), (2,), (1, 2), (3,), (1, 3), (2, 3), (1, 2, 3)]
>>> len(list(all(range(15))))
32767

解释

假设数组A的长度为N,让长度为N的位掩码B表示一个特定的组合C。如果B[i]是1,那么A[i]属于组合C。

方案1说明

所以我们可以遍历所有的位掩码并用这个位掩码过滤源数组A,这可以通过itertools。compress来完成。

方案2说明

...或者,我们可以用组合来表示

现在我们需要考虑这样的情况,当B中只有一个1,然后只有两个1,等等。每种情况都属于特定的组合。 因此,一旦我们组合所有的组合集,我们将得到所有的子序列。

同样,很明显,在这种情况下,所有可能的组合的数量是2^N - 1。当所有B[i]都为零时,我们省略大小写,因为我们假设空集不是一个组合。否则,就不要减去1。

3个功能:

列出n个元素的所有组合 列出n个元素的所有组合,其中顺序不明确 所有的排列

import sys

def permutations(a):
    return combinations(a, len(a))

def combinations(a, n):
    if n == 1:
        for x in a:
            yield [x]
    else:
        for i in range(len(a)):
            for x in combinations(a[:i] + a[i+1:], n-1):
                yield [a[i]] + x

def combinationsNoOrder(a, n):
    if n == 1:
        for x in a:
            yield [x]
    else:
        for i in range(len(a)):
            for x in combinationsNoOrder(a[:i], n-1):
                yield [a[i]] + x
    
if __name__ == "__main__":
    for s in combinations(list(map(int, sys.argv[2:])), int(sys.argv[1])):
        print(s)