我有一个包含15个数字的列表,我需要编写一些代码来生成这些数字的所有32,768种组合。
我已经找到了一些代码(通过谷歌搜索),显然做了我正在寻找的,但我发现代码相当不透明,并谨慎使用它。而且我觉得肯定有更优雅的解决方案。
我唯一想到的就是循环十进制整数1-32768并将其转换为二进制,并使用二进制表示作为筛选器来挑选适当的数字。
有人知道更好的办法吗?使用map(),也许?
我有一个包含15个数字的列表,我需要编写一些代码来生成这些数字的所有32,768种组合。
我已经找到了一些代码(通过谷歌搜索),显然做了我正在寻找的,但我发现代码相当不透明,并谨慎使用它。而且我觉得肯定有更优雅的解决方案。
我唯一想到的就是循环十进制整数1-32768并将其转换为二进制,并使用二进制表示作为筛选器来挑选适当的数字。
有人知道更好的办法吗?使用map(),也许?
当前回答
还可以使用more_itertools包中的powerset函数。
from more_itertools import powerset
l = [1,2,3]
list(powerset(l))
# [(), (1,), (2,), (3,), (1, 2), (1, 3), (2, 3), (1, 2, 3)]
我们也可以验证,它满足OP的要求
from more_itertools import ilen
assert ilen(powerset(range(15))) == 32_768
其他回答
不使用itertools:
def combine(inp):
return combine_helper(inp, [], [])
def combine_helper(inp, temp, ans):
for i in range(len(inp)):
current = inp[i]
remaining = inp[i + 1:]
temp.append(current)
ans.append(tuple(temp))
combine_helper(remaining, temp, ans)
temp.pop()
return ans
print(combine(['a', 'b', 'c', 'd']))
这一行代码给出了所有的组合(如果原始列表/set包含n个不同的元素,则在0到n个元素之间),并使用本机方法itertools.combination:
Python 2
from itertools import combinations
input = ['a', 'b', 'c', 'd']
output = sum([map(list, combinations(input, i)) for i in range(len(input) + 1)], [])
Python 3
from itertools import combinations
input = ['a', 'b', 'c', 'd']
output = sum([list(map(list, combinations(input, i))) for i in range(len(input) + 1)], [])
输出将是:
[[],
['a'],
['b'],
['c'],
['d'],
['a', 'b'],
['a', 'c'],
['a', 'd'],
['b', 'c'],
['b', 'd'],
['c', 'd'],
['a', 'b', 'c'],
['a', 'b', 'd'],
['a', 'c', 'd'],
['b', 'c', 'd'],
['a', 'b', 'c', 'd']]
在网上试试吧:
http://ideone.com/COghfX
这是我的实现
def get_combinations(list_of_things):
"""gets every combination of things in a list returned as a list of lists
Should be read : add all combinations of a certain size to the end of a list for every possible size in the
the list_of_things.
"""
list_of_combinations = [list(combinations_of_a_certain_size)
for possible_size_of_combinations in range(1, len(list_of_things))
for combinations_of_a_certain_size in itertools.combinations(list_of_things,
possible_size_of_combinations)]
return list_of_combinations
下面是一个惰性一行代码,同样使用itertools:
from itertools import compress, product
def combinations(items):
return ( set(compress(items,mask)) for mask in product(*[[0,1]]*len(items)) )
# alternative: ...in product([0,1], repeat=len(items)) )
这个答案背后的主要思想是:有2^N种组合——与长度为N的二进制字符串的数量相同。对于每个二进制字符串,您选择与“1”对应的所有元素。
items=abc * mask=###
|
V
000 ->
001 -> c
010 -> b
011 -> bc
100 -> a
101 -> a c
110 -> ab
111 -> abc
需要考虑的事情:
This requires that you can call len(...) on items (workaround: if items is something like an iterable like a generator, turn it into a list first with items=list(_itemsArg)) This requires that the order of iteration on items is not random (workaround: don't be insane) This requires that the items are unique, or else {2,2,1} and {2,1,1} will both collapse to {2,1} (workaround: use collections.Counter as a drop-in replacement for set; it's basically a multiset... though you may need to later use tuple(sorted(Counter(...).elements())) if you need it to be hashable)
Demo
>>> list(combinations(range(4)))
[set(), {3}, {2}, {2, 3}, {1}, {1, 3}, {1, 2}, {1, 2, 3}, {0}, {0, 3}, {0, 2}, {0, 2, 3}, {0, 1}, {0, 1, 3}, {0, 1, 2}, {0, 1, 2, 3}]
>>> list(combinations('abcd'))
[set(), {'d'}, {'c'}, {'c', 'd'}, {'b'}, {'b', 'd'}, {'c', 'b'}, {'c', 'b', 'd'}, {'a'}, {'a', 'd'}, {'a', 'c'}, {'a', 'c', 'd'}, {'a', 'b'}, {'a', 'b', 'd'}, {'a', 'c', 'b'}, {'a', 'c', 'b', 'd'}]
这个答案漏掉了一个方面:OP要求所有的组合……不仅仅是长度为r的组合。
所以你要么要遍历所有长度为L的循环:
import itertools
stuff = [1, 2, 3]
for L in range(len(stuff) + 1):
for subset in itertools.combinations(stuff, L):
print(subset)
或者——如果你想变得时髦(或者让那些在你之后阅读你的代码的人动脑筋)——你可以生成“组合()”生成器链,并遍历它:
from itertools import chain, combinations
def all_subsets(ss):
return chain(*map(lambda x: combinations(ss, x), range(0, len(ss)+1)))
for subset in all_subsets(stuff):
print(subset)