我有一个包含15个数字的列表,我需要编写一些代码来生成这些数字的所有32,768种组合。
我已经找到了一些代码(通过谷歌搜索),显然做了我正在寻找的,但我发现代码相当不透明,并谨慎使用它。而且我觉得肯定有更优雅的解决方案。
我唯一想到的就是循环十进制整数1-32768并将其转换为二进制,并使用二进制表示作为筛选器来挑选适当的数字。
有人知道更好的办法吗?使用map(),也许?
我有一个包含15个数字的列表,我需要编写一些代码来生成这些数字的所有32,768种组合。
我已经找到了一些代码(通过谷歌搜索),显然做了我正在寻找的,但我发现代码相当不透明,并谨慎使用它。而且我觉得肯定有更优雅的解决方案。
我唯一想到的就是循环十进制整数1-32768并将其转换为二进制,并使用二进制表示作为筛选器来挑选适当的数字。
有人知道更好的办法吗?使用map(),也许?
当前回答
这一行代码给出了所有的组合(如果原始列表/set包含n个不同的元素,则在0到n个元素之间),并使用本机方法itertools.combination:
Python 2
from itertools import combinations
input = ['a', 'b', 'c', 'd']
output = sum([map(list, combinations(input, i)) for i in range(len(input) + 1)], [])
Python 3
from itertools import combinations
input = ['a', 'b', 'c', 'd']
output = sum([list(map(list, combinations(input, i))) for i in range(len(input) + 1)], [])
输出将是:
[[],
['a'],
['b'],
['c'],
['d'],
['a', 'b'],
['a', 'c'],
['a', 'd'],
['b', 'c'],
['b', 'd'],
['c', 'd'],
['a', 'b', 'c'],
['a', 'b', 'd'],
['a', 'c', 'd'],
['b', 'c', 'd'],
['a', 'b', 'c', 'd']]
在网上试试吧:
http://ideone.com/COghfX
其他回答
In comments under the highly upvoted answer by @Dan H, mention is made of the powerset() recipe in the itertools documentation—including one by Dan himself. However, so far no one has posted it as an answer. Since it's probably one of the better if not the best approach to the problem—and given a little encouragement from another commenter, it's shown below. The function produces all unique combinations of the list elements of every length possible (including those containing zero and all the elements).
注意:如果略有不同,目标是只获得唯一元素的组合,将s = list(iterable)一行更改为s = list(set(iterable))以消除任何重复的元素。无论如何,iterable最终被转换为列表这一事实意味着它将与生成器一起工作(与其他几个答案不同)。
from itertools import chain, combinations
def powerset(iterable):
"powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
s = list(iterable) # allows duplicate elements
return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))
stuff = [1, 2, 3]
for i, combo in enumerate(powerset(stuff), 1):
print('combo #{}: {}'.format(i, combo))
输出:
combo #1: ()
combo #2: (1,)
combo #3: (2,)
combo #4: (3,)
combo #5: (1, 2)
combo #6: (1, 3)
combo #7: (2, 3)
combo #8: (1, 2, 3)
下面是一个使用递归的例子:
>>> import copy
>>> def combinations(target,data):
... for i in range(len(data)):
... new_target = copy.copy(target)
... new_data = copy.copy(data)
... new_target.append(data[i])
... new_data = data[i+1:]
... print new_target
... combinations(new_target,
... new_data)
...
...
>>> target = []
>>> data = ['a','b','c','d']
>>>
>>> combinations(target,data)
['a']
['a', 'b']
['a', 'b', 'c']
['a', 'b', 'c', 'd']
['a', 'b', 'd']
['a', 'c']
['a', 'c', 'd']
['a', 'd']
['b']
['b', 'c']
['b', 'c', 'd']
['b', 'd']
['c']
['c', 'd']
['d']
我同意Dan H的观点,Ben确实要求所有的组合。itertools.combination()不会给出所有的组合。
另一个问题是,如果输入iterable很大,返回一个生成器而不是列表中的所有内容可能会更好:
iterable = range(10)
for s in xrange(len(iterable)+1):
for comb in itertools.combinations(iterable, s):
yield comb
我在这个话题上有点晚了,但我想我可以帮助别人。
你可以使用itertools中的product:
from itertools import product
n = [1, 2, 3]
result = product(n, repeat=3) # You can change the repeat more then n length
print(list(result))
输出:
[(1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 2, 1), (1, 2, 2), (1, 2, 3), (1, 3, 1),
(1, 3, 2), (1, 3, 3), (2, 1, 1), (2, 1, 2), (2, 1, 3), (2, 2, 1), (2, 2, 2),
(2, 2, 3), (2, 3, 1), (2, 3, 2), (2, 3, 3), (3, 1, 1), (3, 1, 2), (3, 1, 3),
(3, 2, 1), (3, 2, 2), (3, 2, 3), (3, 3, 1), (3, 3, 2), (3, 3, 3)]
另一个例子,但是改变了repeat参数:
from itertools import product
n = [1, 2, 3]
result = product(n, repeat=4) # Changing repeat to 4
print(list(result))
输出:
(1, 1, 2, 3), (1, 1, 3, 1), (1, 1, 3, 2), (1, 1, 3, 3), (1, 2, 1, 1),
(1, 2, 1, 2), (1, 2, 1, 3), (1, 2, 2, 1), (1, 2, 2, 2), (1, 2, 2, 3),
(1, 2, 3, 1), (1, 2, 3, 2), (1, 2, 3, 3), (1, 3, 1, 1), (1, 3, 1, 2),
(1, 3, 1, 3), (1, 3, 2, 1), (1, 3, 2, 2), (1, 3, 2, 3), (1, 3, 3, 1),
(1, 3, 3, 2), (1, 3, 3, 3), (2, 1, 1, 1), (2, 1, 1, 2), (2, 1, 1, 3),
(2, 1, 2, 1), (2, 1, 2, 2), (2, 1, 2, 3), (2, 1, 3, 1), (2, 1, 3, 2),
(2, 1, 3, 3), (2, 2, 1, 1), (2, 2, 1, 2), (2, 2, 1, 3), (2, 2, 2, 1),
(2, 2, 2, 2), (2, 2, 2, 3), (2, 2, 3, 1), (2, 2, 3, 2), (2, 2, 3, 3),
(2, 3, 1, 1), (2, 3, 1, 2), (2, 3, 1, 3), (2, 3, 2, 1), (2, 3, 2, 2),
(2, 3, 2, 3), (2, 3, 3, 1), (2, 3, 3, 2), (2, 3, 3, 3), (3, 1, 1, 1),
(3, 1, 1, 2), (3, 1, 1, 3), (3, 1, 2, 1), (3, 1, 2, 2), (3, 1, 2, 3),
(3, 1, 3, 1), (3, 1, 3, 2), (3, 1, 3, 3), (3, 2, 1, 1), (3, 2, 1, 2),
(3, 2, 1, 3), (3, 2, 2, 1), (3, 2, 2, 2), (3, 2, 2, 3), (3, 2, 3, 1),
(3, 2, 3, 2), (3, 2, 3, 3), (3, 3, 1, 1), (3, 3, 1, 2), (3, 3, 1, 3),
(3, 3, 2, 1), (3, 3, 2, 2), (3, 3, 2, 3), (3, 3, 3, 1), (3, 3, 3, 2),
(3, 3, 3, 3)]```
我喜欢这个问题,因为有很多方法来实现它。我决定为未来创造一个参考答案。
在生产中使用什么?
intertools的文档有一个独立的例子,为什么不在你的代码中使用它呢?一些人建议使用more_itertools。Powerset,但它具有完全相同的实现!如果我是你,我不会为一个小东西安装整个软件包。也许这是最好的方法:
import itertools
def powerset(iterable):
"powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
s = list(iterable)
return itertools.chain.from_iterable(combinations(s, r) for r in range(len(s)+1))
其他可能的方法
方法0:使用组合
import itertools
def subsets(nums):
result = []
for i in range(len(nums) + 1):
result += itertools.combinations(nums, i)
return result
方法1:简单的递归
def subsets(nums):
result = []
def powerset(alist, index, curr):
if index == len(alist):
result.append(curr)
return
powerset(alist, index + 1, curr + [alist[index]])
powerset(alist, index + 1, curr)
powerset(nums, 0, [])
return result
方法2:回溯
def subsets(nums):
result = []
def backtrack(index, curr, k):
if len(curr) == k:
result.append(list(curr))
return
for i in range(index, len(nums)):
curr.append(nums[i])
backtrack(i + 1, curr, k)
curr.pop()
for k in range(len(nums) + 1):
backtrack(0, [], k)
return result
or
def subsets(nums):
result = []
def dfs(nums, index, path, result):
result.append(path)
for i in range(index, len(nums)):
dfs(nums, i + 1, path + [nums[i]], result)
dfs(nums, 0, [], result)
return result
方法3:位掩码
def subsets(nums):
res = []
n = len(nums)
for i in range(1 << n):
aset = []
for j in range(n):
value = (1 << j) & i # value = (i >> j) & 1
if value:
aset.append(nums[j])
res.append(aset)
return res
或者(不是位掩码,直觉上是2^n个子集)
def subsets(nums):
subsets = []
expected_subsets = 2 ** len(nums)
def generate_subset(subset, nums):
if len(subsets) >= expected_subsets:
return
if len(subsets) < expected_subsets:
subsets.append(subset)
for i in range(len(nums)):
generate_subset(subset + [nums[i]], nums[i + 1:])
generate_subset([], nums)
return subsets
方法4:级联
def subsets(nums):
result = [[]]
for i in range(len(nums)):
for j in range(len(result)):
subset = list(result[j])
subset.append(nums[i])
result.append(subset)
return result