我有一个包含15个数字的列表,我需要编写一些代码来生成这些数字的所有32,768种组合。
我已经找到了一些代码(通过谷歌搜索),显然做了我正在寻找的,但我发现代码相当不透明,并谨慎使用它。而且我觉得肯定有更优雅的解决方案。
我唯一想到的就是循环十进制整数1-32768并将其转换为二进制,并使用二进制表示作为筛选器来挑选适当的数字。
有人知道更好的办法吗?使用map(),也许?
我有一个包含15个数字的列表,我需要编写一些代码来生成这些数字的所有32,768种组合。
我已经找到了一些代码(通过谷歌搜索),显然做了我正在寻找的,但我发现代码相当不透明,并谨慎使用它。而且我觉得肯定有更优雅的解决方案。
我唯一想到的就是循环十进制整数1-32768并将其转换为二进制,并使用二进制表示作为筛选器来挑选适当的数字。
有人知道更好的办法吗?使用map(),也许?
当前回答
我喜欢这个问题,因为有很多方法来实现它。我决定为未来创造一个参考答案。
在生产中使用什么?
intertools的文档有一个独立的例子,为什么不在你的代码中使用它呢?一些人建议使用more_itertools。Powerset,但它具有完全相同的实现!如果我是你,我不会为一个小东西安装整个软件包。也许这是最好的方法:
import itertools
def powerset(iterable):
"powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
s = list(iterable)
return itertools.chain.from_iterable(combinations(s, r) for r in range(len(s)+1))
其他可能的方法
方法0:使用组合
import itertools
def subsets(nums):
result = []
for i in range(len(nums) + 1):
result += itertools.combinations(nums, i)
return result
方法1:简单的递归
def subsets(nums):
result = []
def powerset(alist, index, curr):
if index == len(alist):
result.append(curr)
return
powerset(alist, index + 1, curr + [alist[index]])
powerset(alist, index + 1, curr)
powerset(nums, 0, [])
return result
方法2:回溯
def subsets(nums):
result = []
def backtrack(index, curr, k):
if len(curr) == k:
result.append(list(curr))
return
for i in range(index, len(nums)):
curr.append(nums[i])
backtrack(i + 1, curr, k)
curr.pop()
for k in range(len(nums) + 1):
backtrack(0, [], k)
return result
or
def subsets(nums):
result = []
def dfs(nums, index, path, result):
result.append(path)
for i in range(index, len(nums)):
dfs(nums, i + 1, path + [nums[i]], result)
dfs(nums, 0, [], result)
return result
方法3:位掩码
def subsets(nums):
res = []
n = len(nums)
for i in range(1 << n):
aset = []
for j in range(n):
value = (1 << j) & i # value = (i >> j) & 1
if value:
aset.append(nums[j])
res.append(aset)
return res
或者(不是位掩码,直觉上是2^n个子集)
def subsets(nums):
subsets = []
expected_subsets = 2 ** len(nums)
def generate_subset(subset, nums):
if len(subsets) >= expected_subsets:
return
if len(subsets) < expected_subsets:
subsets.append(subset)
for i in range(len(nums)):
generate_subset(subset + [nums[i]], nums[i + 1:])
generate_subset([], nums)
return subsets
方法4:级联
def subsets(nums):
result = [[]]
for i in range(len(nums)):
for j in range(len(result)):
subset = list(result[j])
subset.append(nums[i])
result.append(subset)
return result
其他回答
如文档中所述
def combinations(iterable, r):
# combinations('ABCD', 2) --> AB AC AD BC BD CD
# combinations(range(4), 3) --> 012 013 023 123
pool = tuple(iterable)
n = len(pool)
if r > n:
return
indices = list(range(r))
yield tuple(pool[i] for i in indices)
while True:
for i in reversed(range(r)):
if indices[i] != i + n - r:
break
else:
return
indices[i] += 1
for j in range(i+1, r):
indices[j] = indices[j-1] + 1
yield tuple(pool[i] for i in indices)
x = [2, 3, 4, 5, 1, 6, 4, 7, 8, 3, 9]
for i in combinations(x, 2):
print i
下面是一个“标准递归答案”,类似于其他类似的答案https://stackoverflow.com/a/23743696/711085。(实际上,我们不必担心耗尽堆栈空间,因为我们没有办法处理所有N!排列)。
它依次访问每个元素,要么取它,要么离开它(从这个算法中我们可以直接看到2^N的基数)。
def combs(xs, i=0):
if i==len(xs):
yield ()
return
for c in combs(xs,i+1):
yield c
yield c+(xs[i],)
演示:
>>> list( combs(range(5)) )
[(), (0,), (1,), (1, 0), (2,), (2, 0), (2, 1), (2, 1, 0), (3,), (3, 0), (3, 1), (3, 1, 0), (3, 2), (3, 2, 0), (3, 2, 1), (3, 2, 1, 0), (4,), (4, 0), (4, 1), (4, 1, 0), (4, 2), (4, 2, 0), (4, 2, 1), (4, 2, 1, 0), (4, 3), (4, 3, 0), (4, 3, 1), (4, 3, 1, 0), (4, 3, 2), (4, 3, 2, 0), (4, 3, 2, 1), (4, 3, 2, 1, 0)]
>>> list(sorted( combs(range(5)), key=len))
[(),
(0,), (1,), (2,), (3,), (4,),
(1, 0), (2, 0), (2, 1), (3, 0), (3, 1), (3, 2), (4, 0), (4, 1), (4, 2), (4, 3),
(2, 1, 0), (3, 1, 0), (3, 2, 0), (3, 2, 1), (4, 1, 0), (4, 2, 0), (4, 2, 1), (4, 3, 0), (4, 3, 1), (4, 3, 2),
(3, 2, 1, 0), (4, 2, 1, 0), (4, 3, 1, 0), (4, 3, 2, 0), (4, 3, 2, 1),
(4, 3, 2, 1, 0)]
>>> len(set(combs(range(5))))
32
这个怎么样?使用字符串而不是列表,但同样的事情..string可以像Python中的列表一样处理:
def comb(s, res):
if not s: return
res.add(s)
for i in range(0, len(s)):
t = s[0:i] + s[i + 1:]
comb(t, res)
res = set()
comb('game', res)
print(res)
这个答案漏掉了一个方面:OP要求所有的组合……不仅仅是长度为r的组合。
所以你要么要遍历所有长度为L的循环:
import itertools
stuff = [1, 2, 3]
for L in range(len(stuff) + 1):
for subset in itertools.combinations(stuff, L):
print(subset)
或者——如果你想变得时髦(或者让那些在你之后阅读你的代码的人动脑筋)——你可以生成“组合()”生成器链,并遍历它:
from itertools import chain, combinations
def all_subsets(ss):
return chain(*map(lambda x: combinations(ss, x), range(0, len(ss)+1)))
for subset in all_subsets(stuff):
print(subset)
这里是另一个解决方案(一行程序),涉及到使用itertools.combination函数,但这里我们使用了双链表理解式(而不是for循环或sum):
def combs(x):
return [c for i in range(len(x)+1) for c in combinations(x,i)]
演示:
>>> combs([1,2,3,4])
[(),
(1,), (2,), (3,), (4,),
(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4),
(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4),
(1, 2, 3, 4)]