我有一个包含15个数字的列表,我需要编写一些代码来生成这些数字的所有32,768种组合。
我已经找到了一些代码(通过谷歌搜索),显然做了我正在寻找的,但我发现代码相当不透明,并谨慎使用它。而且我觉得肯定有更优雅的解决方案。
我唯一想到的就是循环十进制整数1-32768并将其转换为二进制,并使用二进制表示作为筛选器来挑选适当的数字。
有人知道更好的办法吗?使用map(),也许?
我有一个包含15个数字的列表,我需要编写一些代码来生成这些数字的所有32,768种组合。
我已经找到了一些代码(通过谷歌搜索),显然做了我正在寻找的,但我发现代码相当不透明,并谨慎使用它。而且我觉得肯定有更优雅的解决方案。
我唯一想到的就是循环十进制整数1-32768并将其转换为二进制,并使用二进制表示作为筛选器来挑选适当的数字。
有人知道更好的办法吗?使用map(),也许?
当前回答
在Python 3中没有itertools,你可以这样做:
def combinations(arr, carry):
for i in range(len(arr)):
yield carry + arr[i]
yield from combinations(arr[i + 1:], carry + arr[i])
其中最初的carry = ""。
其他回答
这个答案漏掉了一个方面:OP要求所有的组合……不仅仅是长度为r的组合。
所以你要么要遍历所有长度为L的循环:
import itertools
stuff = [1, 2, 3]
for L in range(len(stuff) + 1):
for subset in itertools.combinations(stuff, L):
print(subset)
或者——如果你想变得时髦(或者让那些在你之后阅读你的代码的人动脑筋)——你可以生成“组合()”生成器链,并遍历它:
from itertools import chain, combinations
def all_subsets(ss):
return chain(*map(lambda x: combinations(ss, x), range(0, len(ss)+1)))
for subset in all_subsets(stuff):
print(subset)
这是我的实现
def get_combinations(list_of_things):
"""gets every combination of things in a list returned as a list of lists
Should be read : add all combinations of a certain size to the end of a list for every possible size in the
the list_of_things.
"""
list_of_combinations = [list(combinations_of_a_certain_size)
for possible_size_of_combinations in range(1, len(list_of_things))
for combinations_of_a_certain_size in itertools.combinations(list_of_things,
possible_size_of_combinations)]
return list_of_combinations
如果你不想使用组合库,这里是解决方案:
nums = [1,2,3]
p = [[]]
fnl = [[],nums]
for i in range(len(nums)):
for j in range(i+1,len(nums)):
p[-1].append([i,j])
for i in range(len(nums)-3):
p.append([])
for m in p[-2]:
p[-1].append(m+[m[-1]+1])
for i in p:
for j in i:
n = []
for m in j:
if m < len(nums):
n.append(nums[m])
if n not in fnl:
fnl.append(n)
for i in nums:
if [i] not in fnl:
fnl.append([i])
print(fnl)
输出:
[[], [1, 2, 3], [1, 2], [1, 3], [2, 3], [1], [2], [3]]
这种方法可以很容易地移植到所有支持递归的编程语言中(没有itertools,没有yield,没有列表理解):
def combs(a):
if len(a) == 0:
return [[]]
cs = []
for c in combs(a[1:]):
cs += [c, c+[a[0]]]
return cs
>>> combs([1,2,3,4,5])
[[], [1], [2], [2, 1], [3], [3, 1], [3, 2], ..., [5, 4, 3, 2, 1]]
正如James Brady提到的,你的itertools.combination是一个键。但这并不是一个完整的解决方案。
解决方案1
import itertools
def all(lst):
# ci is a bitmask which denotes particular combination,
# see explanation below
for ci in range(1, 2**len(lst)):
yield tuple(itertools.compress(
lst,
[ci & (1<<k) for k in range(0, len(lst))]
))
解决方案2
import itertools
def all_combs(lst):
for r in range(1, len(lst)+1):
for comb in itertools.combinations(lst, r):
yield comb
例子
>>> list(all_combs([1,2,3]))
[(1,), (2,), (3,), (1, 2), (1, 3), (2, 3), (1, 2, 3)]
>>> len(list(all_combs([1,2,3])))
7
>>> len(list(all_combs(range(0, 15))))
32767
>>> list(all([1,2,3]))
[(1,), (2,), (1, 2), (3,), (1, 3), (2, 3), (1, 2, 3)]
>>> len(list(all(range(15))))
32767
解释
假设数组A的长度为N,让长度为N的位掩码B表示一个特定的组合C。如果B[i]是1,那么A[i]属于组合C。
方案1说明
所以我们可以遍历所有的位掩码并用这个位掩码过滤源数组A,这可以通过itertools。compress来完成。
方案2说明
...或者,我们可以用组合来表示
现在我们需要考虑这样的情况,当B中只有一个1,然后只有两个1,等等。每种情况都属于特定的组合。 因此,一旦我们组合所有的组合集,我们将得到所有的子序列。
同样,很明显,在这种情况下,所有可能的组合的数量是2^N - 1。当所有B[i]都为零时,我们省略大小写,因为我们假设空集不是一个组合。否则,就不要减去1。