我有一个包含15个数字的列表,我需要编写一些代码来生成这些数字的所有32,768种组合。

我已经找到了一些代码(通过谷歌搜索),显然做了我正在寻找的,但我发现代码相当不透明,并谨慎使用它。而且我觉得肯定有更优雅的解决方案。

我唯一想到的就是循环十进制整数1-32768并将其转换为二进制,并使用二进制表示作为筛选器来挑选适当的数字。

有人知道更好的办法吗?使用map(),也许?


当前回答

In comments under the highly upvoted answer by @Dan H, mention is made of the powerset() recipe in the itertools documentation—including one by Dan himself. However, so far no one has posted it as an answer. Since it's probably one of the better if not the best approach to the problem—and given a little encouragement from another commenter, it's shown below. The function produces all unique combinations of the list elements of every length possible (including those containing zero and all the elements).

注意:如果略有不同,目标是只获得唯一元素的组合,将s = list(iterable)一行更改为s = list(set(iterable))以消除任何重复的元素。无论如何,iterable最终被转换为列表这一事实意味着它将与生成器一起工作(与其他几个答案不同)。

from itertools import chain, combinations

def powerset(iterable):
    "powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
    s = list(iterable)  # allows duplicate elements
    return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))

stuff = [1, 2, 3]
for i, combo in enumerate(powerset(stuff), 1):
    print('combo #{}: {}'.format(i, combo))

输出:

combo #1: ()
combo #2: (1,)
combo #3: (2,)
combo #4: (3,)
combo #5: (1, 2)
combo #6: (1, 3)
combo #7: (2, 3)
combo #8: (1, 2, 3)

其他回答

在Python 3中没有itertools,你可以这样做:

def combinations(arr, carry):
    for i in range(len(arr)):
        yield carry + arr[i]
        yield from combinations(arr[i + 1:], carry + arr[i])

其中最初的carry = ""。

下面是一个“标准递归答案”,类似于其他类似的答案https://stackoverflow.com/a/23743696/711085。(实际上,我们不必担心耗尽堆栈空间,因为我们没有办法处理所有N!排列)。

它依次访问每个元素,要么取它,要么离开它(从这个算法中我们可以直接看到2^N的基数)。

def combs(xs, i=0):
    if i==len(xs):
        yield ()
        return
    for c in combs(xs,i+1):
        yield c
        yield c+(xs[i],)

演示:

>>> list( combs(range(5)) )
[(), (0,), (1,), (1, 0), (2,), (2, 0), (2, 1), (2, 1, 0), (3,), (3, 0), (3, 1), (3, 1, 0), (3, 2), (3, 2, 0), (3, 2, 1), (3, 2, 1, 0), (4,), (4, 0), (4, 1), (4, 1, 0), (4, 2), (4, 2, 0), (4, 2, 1), (4, 2, 1, 0), (4, 3), (4, 3, 0), (4, 3, 1), (4, 3, 1, 0), (4, 3, 2), (4, 3, 2, 0), (4, 3, 2, 1), (4, 3, 2, 1, 0)]

>>> list(sorted( combs(range(5)), key=len))
[(), 
 (0,), (1,), (2,), (3,), (4,), 
 (1, 0), (2, 0), (2, 1), (3, 0), (3, 1), (3, 2), (4, 0), (4, 1), (4, 2), (4, 3), 
 (2, 1, 0), (3, 1, 0), (3, 2, 0), (3, 2, 1), (4, 1, 0), (4, 2, 0), (4, 2, 1), (4, 3, 0), (4, 3, 1), (4, 3, 2), 
 (3, 2, 1, 0), (4, 2, 1, 0), (4, 3, 1, 0), (4, 3, 2, 0), (4, 3, 2, 1), 
 (4, 3, 2, 1, 0)]

>>> len(set(combs(range(5))))
32

这段代码采用了一个简单的嵌套列表算法…

# FUNCTION getCombos: To generate all combos of an input list, consider the following sets of nested lists...
#
#           [ [ [] ] ]
#           [ [ [] ], [ [A] ] ]
#           [ [ [] ], [ [A],[B] ],         [ [A,B] ] ]
#           [ [ [] ], [ [A],[B],[C] ],     [ [A,B],[A,C],[B,C] ],                   [ [A,B,C] ] ]
#           [ [ [] ], [ [A],[B],[C],[D] ], [ [A,B],[A,C],[B,C],[A,D],[B,D],[C,D] ], [ [A,B,C],[A,B,D],[A,C,D],[B,C,D] ], [ [A,B,C,D] ] ]
#
#  There is a set of lists for each number of items that will occur in a combo (including an empty set).
#  For each additional item, begin at the back of the list by adding an empty list, then taking the set of
#  lists in the previous column (e.g., in the last list, for sets of 3 items you take the existing set of
#  3-item lists and append to it additional lists created by appending the item (4) to the lists in the
#  next smallest item count set. In this case, for the three sets of 2-items in the previous list. Repeat
#  for each set of lists back to the initial list containing just the empty list.
#

def getCombos(listIn = ['A','B','C','D','E','F'] ):
    listCombos = [ [ [] ] ]     # list of lists of combos, seeded with a list containing only the empty list
    listSimple = []             # list to contain the final returned list of items (e.g., characters)

    for item in listIn:
        listCombos.append([])   # append an emtpy list to the end for each new item added
        for index in xrange(len(listCombos)-1, 0, -1):  # set the index range to work through the list
            for listPrev in listCombos[index-1]:        # retrieve the lists from the previous column
                listCur = listPrev[:]                   # create a new temporary list object to update
                listCur.append(item)                    # add the item to the previous list to make it current
                listCombos[index].append(listCur)       # list length and append it to the current list

                itemCombo = ''                          # Create a str to concatenate list items into a str
                for item in listCur:                    # concatenate the members of the lists to create
                    itemCombo += item                   # create a string of items
                listSimple.append(itemCombo)            # add to the final output list

    return [listSimple, listCombos]
# END getCombos()

如文档中所述

def combinations(iterable, r):
    # combinations('ABCD', 2) --> AB AC AD BC BD CD
    # combinations(range(4), 3) --> 012 013 023 123
    pool = tuple(iterable)
    n = len(pool)
    if r > n:
        return
    indices = list(range(r))
    yield tuple(pool[i] for i in indices)
    while True:
        for i in reversed(range(r)):
            if indices[i] != i + n - r:
                break
        else:
            return
        indices[i] += 1
        for j in range(i+1, r):
            indices[j] = indices[j-1] + 1
        yield tuple(pool[i] for i in indices)


x = [2, 3, 4, 5, 1, 6, 4, 7, 8, 3, 9]
for i in combinations(x, 2):
    print i

正如James Brady提到的,你的itertools.combination是一个键。但这并不是一个完整的解决方案。

解决方案1

import itertools
def all(lst):
    # ci is a bitmask which denotes particular combination,
    # see explanation below
    for ci in range(1, 2**len(lst)):
        yield tuple(itertools.compress(
            lst,
            [ci & (1<<k) for k in  range(0, len(lst))]
        ))

解决方案2

import itertools
def all_combs(lst):
    for r in range(1, len(lst)+1):
        for comb in itertools.combinations(lst, r):
            yield comb

例子

>>> list(all_combs([1,2,3]))
[(1,), (2,), (3,), (1, 2), (1, 3), (2, 3), (1, 2, 3)]
>>> len(list(all_combs([1,2,3])))
7
>>> len(list(all_combs(range(0, 15))))
32767
>>> list(all([1,2,3]))
[(1,), (2,), (1, 2), (3,), (1, 3), (2, 3), (1, 2, 3)]
>>> len(list(all(range(15))))
32767

解释

假设数组A的长度为N,让长度为N的位掩码B表示一个特定的组合C。如果B[i]是1,那么A[i]属于组合C。

方案1说明

所以我们可以遍历所有的位掩码并用这个位掩码过滤源数组A,这可以通过itertools。compress来完成。

方案2说明

...或者,我们可以用组合来表示

现在我们需要考虑这样的情况,当B中只有一个1,然后只有两个1,等等。每种情况都属于特定的组合。 因此,一旦我们组合所有的组合集,我们将得到所有的子序列。

同样,很明显,在这种情况下,所有可能的组合的数量是2^N - 1。当所有B[i]都为零时,我们省略大小写,因为我们假设空集不是一个组合。否则,就不要减去1。