根据MSDN, Median在Transact-SQL中不能作为聚合函数使用。但是,我想知道是否可以创建此功能(使用create Aggregate函数、用户定义函数或其他方法)。
最好的方法(如果可能的话)是什么——允许在聚合查询中计算中值(假设是数值数据类型)?
根据MSDN, Median在Transact-SQL中不能作为聚合函数使用。但是,我想知道是否可以创建此功能(使用create Aggregate函数、用户定义函数或其他方法)。
最好的方法(如果可能的话)是什么——允许在聚合查询中计算中值(假设是数值数据类型)?
在UDF中,写:
Select Top 1 medianSortColumn from Table T
Where (Select Count(*) from Table
Where MedianSortColumn <
(Select Count(*) From Table) / 2)
Order By medianSortColumn
我想自己想出一个解决办法,但我的大脑绊倒了。我觉得很管用,但别让我早上解释。: P
DECLARE @table AS TABLE
(
Number int not null
);
insert into @table select 2;
insert into @table select 4;
insert into @table select 9;
insert into @table select 15;
insert into @table select 22;
insert into @table select 26;
insert into @table select 37;
insert into @table select 49;
DECLARE @Count AS INT
SELECT @Count = COUNT(*) FROM @table;
WITH MyResults(RowNo, Number) AS
(
SELECT RowNo, Number FROM
(SELECT ROW_NUMBER() OVER (ORDER BY Number) AS RowNo, Number FROM @table) AS Foo
)
SELECT AVG(Number) FROM MyResults WHERE RowNo = (@Count+1)/2 OR RowNo = ((@Count+1)%2) * ((@Count+2)/2)
--Create Temp Table to Store Results in
DECLARE @results AS TABLE
(
[Month] datetime not null
,[Median] int not null
);
--This variable will determine the date
DECLARE @IntDate as int
set @IntDate = -13
WHILE (@IntDate < 0)
BEGIN
--Create Temp Table
DECLARE @table AS TABLE
(
[Rank] int not null
,[Days Open] int not null
);
--Insert records into Temp Table
insert into @table
SELECT
rank() OVER (ORDER BY DATEADD(mm, DATEDIFF(mm, 0, DATEADD(ss, SVR.close_date, '1970')), 0), DATEDIFF(day,DATEADD(ss, SVR.open_date, '1970'),DATEADD(ss, SVR.close_date, '1970')),[SVR].[ref_num]) as [Rank]
,DATEDIFF(day,DATEADD(ss, SVR.open_date, '1970'),DATEADD(ss, SVR.close_date, '1970')) as [Days Open]
FROM
mdbrpt.dbo.View_Request SVR
LEFT OUTER JOIN dbo.dtv_apps_systems vapp
on SVR.category = vapp.persid
LEFT OUTER JOIN dbo.prob_ctg pctg
on SVR.category = pctg.persid
Left Outer Join [mdbrpt].[dbo].[rootcause] as [Root Cause]
on [SVR].[rootcause]=[Root Cause].[id]
Left Outer Join [mdbrpt].[dbo].[cr_stat] as [Status]
on [SVR].[status]=[Status].[code]
LEFT OUTER JOIN [mdbrpt].[dbo].[net_res] as [net]
on [net].[id]=SVR.[affected_rc]
WHERE
SVR.Type IN ('P')
AND
SVR.close_date IS NOT NULL
AND
[Status].[SYM] = 'Closed'
AND
SVR.parent is null
AND
[Root Cause].[sym] in ( 'RC - Application','RC - Hardware', 'RC - Operational', 'RC - Unknown')
AND
(
[vapp].[appl_name] in ('3PI','Billing Rpts/Files','Collabrent','Reports','STMS','STMS 2','Telco','Comergent','OOM','C3-BAU','C3-DD','DIRECTV','DIRECTV Sales','DIRECTV Self Care','Dealer Website','EI Servlet','Enterprise Integration','ET','ICAN','ODS','SB-SCM','SeeBeyond','Digital Dashboard','IVR','OMS','Order Services','Retail Services','OSCAR','SAP','CTI','RIO','RIO Call Center','RIO Field Services','FSS-RIO3','TAOS','TCS')
OR
pctg.sym in ('Systems.Release Health Dashboard.Problem','DTV QA Test.Enterprise Release.Deferred Defect Log')
AND
[Net].[nr_desc] in ('3PI','Billing Rpts/Files','Collabrent','Reports','STMS','STMS 2','Telco','Comergent','OOM','C3-BAU','C3-DD','DIRECTV','DIRECTV Sales','DIRECTV Self Care','Dealer Website','EI Servlet','Enterprise Integration','ET','ICAN','ODS','SB-SCM','SeeBeyond','Digital Dashboard','IVR','OMS','Order Services','Retail Services','OSCAR','SAP','CTI','RIO','RIO Call Center','RIO Field Services','FSS-RIO3','TAOS','TCS')
)
AND
DATEADD(mm, DATEDIFF(mm, 0, DATEADD(ss, SVR.close_date, '1970')), 0) = DATEADD(mm, DATEDIFF(mm,0,DATEADD(mm,@IntDate,getdate())), 0)
ORDER BY [Days Open]
DECLARE @Count AS INT
SELECT @Count = COUNT(*) FROM @table;
WITH MyResults(RowNo, [Days Open]) AS
(
SELECT RowNo, [Days Open] FROM
(SELECT ROW_NUMBER() OVER (ORDER BY [Days Open]) AS RowNo, [Days Open] FROM @table) AS Foo
)
insert into @results
SELECT
DATEADD(mm, DATEDIFF(mm,0,DATEADD(mm,@IntDate,getdate())), 0) as [Month]
,AVG([Days Open])as [Median] FROM MyResults WHERE RowNo = (@Count+1)/2 OR RowNo = ((@Count+1)%2) * ((@Count+2)/2)
set @IntDate = @IntDate+1
DELETE FROM @table
END
select *
from @results
order by [Month]
2019 UPDATE: In the 10 years since I wrote this answer, more solutions have been uncovered that may yield better results. Also, SQL Server releases since then (especially SQL 2012) have introduced new T-SQL features that can be used to calculate medians. SQL Server releases have also improved its query optimizer which may affect perf of various median solutions. Net-net, my original 2009 post is still OK but there may be better solutions on for modern SQL Server apps. Take a look at this article from 2012 which is a great resource: https://sqlperformance.com/2012/08/t-sql-queries/median
本文发现,以下模式比所有其他选择都要快得多,至少在他们测试的简单模式上是这样。该解决方案比测试的最慢解决方案(PERCENTILE_CONT)快373x (!!)注意,这个技巧需要两个独立的查询,这可能不是在所有情况下都可行。它还需要SQL 2012或更高版本。
DECLARE @c BIGINT = (SELECT COUNT(*) FROM dbo.EvenRows);
SELECT AVG(1.0 * val)
FROM (
SELECT val FROM dbo.EvenRows
ORDER BY val
OFFSET (@c - 1) / 2 ROWS
FETCH NEXT 1 + (1 - @c % 2) ROWS ONLY
) AS x;
当然,仅仅因为2012年对一个模式的一次测试产生了很好的结果,您的实际情况可能会有所不同,特别是如果您使用的是SQL Server 2014或更高版本。如果性能对中值计算很重要,我强烈建议尝试并测试那篇文章中推荐的几个选项,以确保您找到了最适合您的模式的选项。
我还会特别小心地使用(SQL Server 2012新增的)函数PERCENTILE_CONT,这是这个问题的其他答案之一中推荐的,因为上面链接的文章发现这个内置函数比最快的解决方案慢373x。在过去的7年里,这种差异可能已经得到了改善,但就我个人而言,在验证它与其他解决方案的性能之前,我不会在大型表上使用这个函数。
2009年的原始帖子如下:
有很多方法可以做到这一点,它们的性能差别很大。下面是一个优化得特别好的解决方案,包括median、ROW_NUMBERs和性能。当涉及到执行期间生成的实际I/ o时,这是一个特别优的解决方案——它看起来比其他解决方案成本更高,但实际上要快得多。
该页还包含对其他解决方案和性能测试细节的讨论。请注意,如果有多行具有相同的中位数列值,则使用唯一列作为消歧器。
就像所有的数据库性能场景一样,总是尝试在真实的硬件上用真实的数据测试解决方案——你永远不知道什么时候对SQL Server优化器的更改或环境中的某个特性会使正常快速的解决方案变慢。
SELECT
CustomerId,
AVG(TotalDue)
FROM
(
SELECT
CustomerId,
TotalDue,
-- SalesOrderId in the ORDER BY is a disambiguator to break ties
ROW_NUMBER() OVER (
PARTITION BY CustomerId
ORDER BY TotalDue ASC, SalesOrderId ASC) AS RowAsc,
ROW_NUMBER() OVER (
PARTITION BY CustomerId
ORDER BY TotalDue DESC, SalesOrderId DESC) AS RowDesc
FROM Sales.SalesOrderHeader SOH
) x
WHERE
RowAsc IN (RowDesc, RowDesc - 1, RowDesc + 1)
GROUP BY CustomerId
ORDER BY CustomerId;
如果你使用的是SQL 2005或更好的版本,这是一个很好的,简单的中位数计算表中的单列:
SELECT
(
(SELECT MAX(Score) FROM
(SELECT TOP 50 PERCENT Score FROM Posts ORDER BY Score) AS BottomHalf)
+
(SELECT MIN(Score) FROM
(SELECT TOP 50 PERCENT Score FROM Posts ORDER BY Score DESC) AS TopHalf)
) / 2 AS Median
我最初的回答是:
select max(my_column) as [my_column], quartile
from (select my_column, ntile(4) over (order by my_column) as [quartile]
from my_table) i
--where quartile = 2
group by quartile
这将使您一举获得中位数和四分位范围。如果你真的只想要一行作为中值,那么取消注释where子句。
当你把它放入解释计划时,60%的工作是对数据进行排序,这在计算像这样的位置依赖统计数据时是不可避免的。
我修改了答案,以遵循Robert Ševčík-Robajz在下面的评论中提出的优秀建议:
;with PartitionedData as
(select my_column, ntile(10) over (order by my_column) as [percentile]
from my_table),
MinimaAndMaxima as
(select min(my_column) as [low], max(my_column) as [high], percentile
from PartitionedData
group by percentile)
select
case
when b.percentile = 10 then cast(b.high as decimal(18,2))
else cast((a.low + b.high) as decimal(18,2)) / 2
end as [value], --b.high, a.low,
b.percentile
from MinimaAndMaxima a
join MinimaAndMaxima b on (a.percentile -1 = b.percentile) or (a.percentile = 10 and b.percentile = 10)
--where b.percentile = 5
当您有偶数个数据项时,这应该计算正确的中位数和百分比值。同样,如果您只想要中位数而不是整个百分位数分布,请取消最后的where子句的注释。
虽然Justin grant的解决方案看起来很可靠,但我发现当您在给定的分区键中有许多重复值时,ASC重复值的行号最终会不按顺序排列,因此它们不能正确对齐。
以下是我的研究结果的一个片段:
KEY VALUE ROWA ROWD
13 2 22 182
13 1 6 183
13 1 7 184
13 1 8 185
13 1 9 186
13 1 10 187
13 1 11 188
13 1 12 189
13 0 1 190
13 0 2 191
13 0 3 192
13 0 4 193
13 0 5 194
我使用Justin的代码作为这个解决方案的基础。尽管考虑到使用多个派生表效率不高,但它确实解决了我遇到的行排序问题。任何改进都会受到欢迎,因为我在T-SQL方面不是那么有经验。
SELECT PKEY, cast(AVG(VALUE)as decimal(5,2)) as MEDIANVALUE
FROM
(
SELECT PKEY,VALUE,ROWA,ROWD,
'FLAG' = (CASE WHEN ROWA IN (ROWD,ROWD-1,ROWD+1) THEN 1 ELSE 0 END)
FROM
(
SELECT
PKEY,
cast(VALUE as decimal(5,2)) as VALUE,
ROWA,
ROW_NUMBER() OVER (PARTITION BY PKEY ORDER BY ROWA DESC) as ROWD
FROM
(
SELECT
PKEY,
VALUE,
ROW_NUMBER() OVER (PARTITION BY PKEY ORDER BY VALUE ASC,PKEY ASC ) as ROWA
FROM [MTEST]
)T1
)T2
)T3
WHERE FLAG = '1'
GROUP BY PKEY
ORDER BY PKEY
我只是在寻找一个基于集的中位数的解决方案时偶然发现了这一页。在研究了一些解决方案之后,我想到了以下几点。希望是有用的。
DECLARE @test TABLE(
i int identity(1,1),
id int,
score float
)
INSERT INTO @test (id,score) VALUES (1,10)
INSERT INTO @test (id,score) VALUES (1,11)
INSERT INTO @test (id,score) VALUES (1,15)
INSERT INTO @test (id,score) VALUES (1,19)
INSERT INTO @test (id,score) VALUES (1,20)
INSERT INTO @test (id,score) VALUES (2,20)
INSERT INTO @test (id,score) VALUES (2,21)
INSERT INTO @test (id,score) VALUES (2,25)
INSERT INTO @test (id,score) VALUES (2,29)
INSERT INTO @test (id,score) VALUES (2,30)
INSERT INTO @test (id,score) VALUES (3,20)
INSERT INTO @test (id,score) VALUES (3,21)
INSERT INTO @test (id,score) VALUES (3,25)
INSERT INTO @test (id,score) VALUES (3,29)
DECLARE @counts TABLE(
id int,
cnt int
)
INSERT INTO @counts (
id,
cnt
)
SELECT
id,
COUNT(*)
FROM
@test
GROUP BY
id
SELECT
drv.id,
drv.start,
AVG(t.score)
FROM
(
SELECT
MIN(t.i)-1 AS start,
t.id
FROM
@test t
GROUP BY
t.id
) drv
INNER JOIN @test t ON drv.id = t.id
INNER JOIN @counts c ON t.id = c.id
WHERE
t.i = ((c.cnt+1)/2)+drv.start
OR (
t.i = (((c.cnt+1)%2) * ((c.cnt+2)/2))+drv.start
AND ((c.cnt+1)%2) * ((c.cnt+2)/2) <> 0
)
GROUP BY
drv.id,
drv.start
这适用于SQL 2000:
DECLARE @testTable TABLE
(
VALUE INT
)
--INSERT INTO @testTable -- Even Test
--SELECT 3 UNION ALL
--SELECT 5 UNION ALL
--SELECT 7 UNION ALL
--SELECT 12 UNION ALL
--SELECT 13 UNION ALL
--SELECT 14 UNION ALL
--SELECT 21 UNION ALL
--SELECT 23 UNION ALL
--SELECT 23 UNION ALL
--SELECT 23 UNION ALL
--SELECT 23 UNION ALL
--SELECT 29 UNION ALL
--SELECT 40 UNION ALL
--SELECT 56
--
--INSERT INTO @testTable -- Odd Test
--SELECT 3 UNION ALL
--SELECT 5 UNION ALL
--SELECT 7 UNION ALL
--SELECT 12 UNION ALL
--SELECT 13 UNION ALL
--SELECT 14 UNION ALL
--SELECT 21 UNION ALL
--SELECT 23 UNION ALL
--SELECT 23 UNION ALL
--SELECT 23 UNION ALL
--SELECT 23 UNION ALL
--SELECT 29 UNION ALL
--SELECT 39 UNION ALL
--SELECT 40 UNION ALL
--SELECT 56
DECLARE @RowAsc TABLE
(
ID INT IDENTITY,
Amount INT
)
INSERT INTO @RowAsc
SELECT VALUE
FROM @testTable
ORDER BY VALUE ASC
SELECT AVG(amount)
FROM @RowAsc ra
WHERE ra.id IN
(
SELECT ID
FROM @RowAsc
WHERE ra.id -
(
SELECT MAX(id) / 2.0
FROM @RowAsc
) BETWEEN 0 AND 1
)
在SQL Server 2012中,您应该使用PERCENTILE_CONT:
SELECT SalesOrderID, OrderQty,
PERCENTILE_CONT(0.5)
WITHIN GROUP (ORDER BY OrderQty)
OVER (PARTITION BY SalesOrderID) AS MedianCont
FROM Sales.SalesOrderDetail
WHERE SalesOrderID IN (43670, 43669, 43667, 43663)
ORDER BY SalesOrderID DESC
参见:http://blog.sqlauthority.com/2011/11/20/sql-server-introduction-to-percentile_cont-analytic-functions-introduced-in-sql-server-2012/
简单、快速、准确
SELECT x.Amount
FROM (SELECT amount,
Count(1) OVER (partition BY 'A') AS TotalRows,
Row_number() OVER (ORDER BY Amount ASC) AS AmountOrder
FROM facttransaction ft) x
WHERE x.AmountOrder = Round(x.TotalRows / 2.0, 0)
更好的是:
SELECT @Median = AVG(1.0 * val)
FROM
(
SELECT o.val, rn = ROW_NUMBER() OVER (ORDER BY o.val), c.c
FROM dbo.EvenRows AS o
CROSS JOIN (SELECT c = COUNT(*) FROM dbo.EvenRows) AS c
) AS x
WHERE rn IN ((c + 1)/2, (c + 2)/2);
来自主人,伊兹克·本甘!
如果你想在SQL Server中使用创建聚合函数,这是如何做到的。这样做的好处是能够编写干净的查询。注意,这个过程可以很容易地计算一个百分位值。
创建一个新的Visual Studio项目,并将目标框架设置为。net 3.5(这是针对SQL 2008的,在SQL 2012中可能有所不同)。然后创建一个类文件,并放入以下代码或c#等效代码:
Imports Microsoft.SqlServer.Server
Imports System.Data.SqlTypes
Imports System.IO
<Serializable>
<SqlUserDefinedAggregate(Format.UserDefined, IsInvariantToNulls:=True, IsInvariantToDuplicates:=False, _
IsInvariantToOrder:=True, MaxByteSize:=-1, IsNullIfEmpty:=True)>
Public Class Median
Implements IBinarySerialize
Private _items As List(Of Decimal)
Public Sub Init()
_items = New List(Of Decimal)()
End Sub
Public Sub Accumulate(value As SqlDecimal)
If Not value.IsNull Then
_items.Add(value.Value)
End If
End Sub
Public Sub Merge(other As Median)
If other._items IsNot Nothing Then
_items.AddRange(other._items)
End If
End Sub
Public Function Terminate() As SqlDecimal
If _items.Count <> 0 Then
Dim result As Decimal
_items = _items.OrderBy(Function(i) i).ToList()
If _items.Count Mod 2 = 0 Then
result = ((_items((_items.Count / 2) - 1)) + (_items(_items.Count / 2))) / 2@
Else
result = _items((_items.Count - 1) / 2)
End If
Return New SqlDecimal(result)
Else
Return New SqlDecimal()
End If
End Function
Public Sub Read(r As BinaryReader) Implements IBinarySerialize.Read
'deserialize it from a string
Dim list = r.ReadString()
_items = New List(Of Decimal)
For Each value In list.Split(","c)
Dim number As Decimal
If Decimal.TryParse(value, number) Then
_items.Add(number)
End If
Next
End Sub
Public Sub Write(w As BinaryWriter) Implements IBinarySerialize.Write
'serialize the list to a string
Dim list = ""
For Each item In _items
If list <> "" Then
list += ","
End If
list += item.ToString()
Next
w.Write(list)
End Sub
End Class
然后编译它,并将DLL和PDB文件复制到您的SQL Server机器,在SQL Server中运行以下命令:
CREATE ASSEMBLY CustomAggregate FROM '{path to your DLL}'
WITH PERMISSION_SET=SAFE;
GO
CREATE AGGREGATE Median(@value decimal(9, 3))
RETURNS decimal(9, 3)
EXTERNAL NAME [CustomAggregate].[{namespace of your DLL}.Median];
GO
然后你可以写一个查询来计算中位数,就像这样: SELECT dbo.Median(Field) FROM Table
对于像我这样正在学习基础知识的新手来说,我个人觉得这个例子更容易理解,因为它更容易理解到底发生了什么以及中值来自哪里……
select
( max(a.[Value1]) + min(a.[Value1]) ) / 2 as [Median Value1]
,( max(a.[Value2]) + min(a.[Value2]) ) / 2 as [Median Value2]
from (select
datediff(dd,startdate,enddate) as [Value1]
,xxxxxxxxxxxxxx as [Value2]
from dbo.table1
)a
不过,对上面的一些代码绝对敬畏!!
这是我能想到的最简单的答案。我的数据处理得很好。如果你想排除某些值,只需在内部select中添加where子句。
SELECT TOP 1
ValueField AS MedianValue
FROM
(SELECT TOP(SELECT COUNT(1)/2 FROM tTABLE)
ValueField
FROM
tTABLE
ORDER BY
ValueField) A
ORDER BY
ValueField DESC
犹斯丁上面的例子很好。但是主键的需求应该非常清楚地说明。我曾在野外见过没有密钥的代码,结果很糟糕。
我对Percentile_Cont的抱怨是它不会从数据集中给你一个实际的值。 要从数据集中获得一个实际值的“中值”,请使用Percentile_Disc。
SELECT SalesOrderID, OrderQty,
PERCENTILE_DISC(0.5)
WITHIN GROUP (ORDER BY OrderQty)
OVER (PARTITION BY SalesOrderID) AS MedianCont
FROM Sales.SalesOrderDetail
WHERE SalesOrderID IN (43670, 43669, 43667, 43663)
ORDER BY SalesOrderID DESC
以下解决方案在这些假设下有效:
无重复值 没有取消
代码:
IF OBJECT_ID('dbo.R', 'U') IS NOT NULL
DROP TABLE dbo.R
CREATE TABLE R (
A FLOAT NOT NULL);
INSERT INTO R VALUES (1);
INSERT INTO R VALUES (2);
INSERT INTO R VALUES (3);
INSERT INTO R VALUES (4);
INSERT INTO R VALUES (5);
INSERT INTO R VALUES (6);
-- Returns Median(R)
select SUM(A) / CAST(COUNT(A) AS FLOAT)
from R R1
where ((select count(A) from R R2 where R1.A > R2.A) =
(select count(A) from R R2 where R1.A < R2.A)) OR
((select count(A) from R R2 where R1.A > R2.A) + 1 =
(select count(A) from R R2 where R1.A < R2.A)) OR
((select count(A) from R R2 where R1.A > R2.A) =
(select count(A) from R R2 where R1.A < R2.A) + 1) ;
DECLARE @Obs int
DECLARE @RowAsc table
(
ID INT IDENTITY,
Observation FLOAT
)
INSERT INTO @RowAsc
SELECT Observations FROM MyTable
ORDER BY 1
SELECT @Obs=COUNT(*)/2 FROM @RowAsc
SELECT Observation AS Median FROM @RowAsc WHERE ID=@Obs
对于大规模数据集,您可以尝试以下GIST:
https://gist.github.com/chrisknoll/1b38761ce8c5016ec5b2
它通过聚合您在集合中找到的不同值(例如年龄或出生年份等)来工作,并使用SQL窗口函数来定位您在查询中指定的任何百分比位置。
我尝试了几种替代方案,但由于我的数据记录有重复的值,ROW_NUMBER版本似乎不是我的选择。这里是我使用的查询(NTILE版本):
SELECT distinct
CustomerId,
(
MAX(CASE WHEN Percent50_Asc=1 THEN TotalDue END) OVER (PARTITION BY CustomerId) +
MIN(CASE WHEN Percent50_desc=1 THEN TotalDue END) OVER (PARTITION BY CustomerId)
)/2 MEDIAN
FROM
(
SELECT
CustomerId,
TotalDue,
NTILE(2) OVER (
PARTITION BY CustomerId
ORDER BY TotalDue ASC) AS Percent50_Asc,
NTILE(2) OVER (
PARTITION BY CustomerId
ORDER BY TotalDue DESC) AS Percent50_desc
FROM Sales.SalesOrderHeader SOH
) x
ORDER BY CustomerId;
在Jeff Atwood的答案的基础上,它是用GROUP BY和一个相关的子查询来获得每个组的中位数。
SELECT TestID,
(
(SELECT MAX(Score) FROM
(SELECT TOP 50 PERCENT Score FROM Posts WHERE TestID = Posts_parent.TestID ORDER BY Score) AS BottomHalf)
+
(SELECT MIN(Score) FROM
(SELECT TOP 50 PERCENT Score FROM Posts WHERE TestID = Posts_parent.TestID ORDER BY Score DESC) AS TopHalf)
) / 2 AS MedianScore,
AVG(Score) AS AvgScore, MIN(Score) AS MinScore, MAX(Score) AS MaxScore
FROM Posts_parent
GROUP BY Posts_parent.TestID
MS SQL Server 2012(及以后版本)有PERCENTILE_DISC函数,计算排序值的特定百分比。PERCENTILE_DISC(0.5)将计算中位数- https://msdn.microsoft.com/en-us/library/hh231327.aspx
下面的查询从一列中的值列表返回中位数。它不能作为聚合函数使用,也不能与聚合函数一起使用,但仍然可以在内部select中使用带有WHERE子句的子查询。
SQL Server 2005+:
SELECT TOP 1 value from
(
SELECT TOP 50 PERCENT value
FROM table_name
ORDER BY value
)for_median
ORDER BY value DESC
对于连续变量/测量'table1'中的'col1'
select col1
from
(select top 50 percent col1,
ROW_NUMBER() OVER(ORDER BY col1 ASC) AS Rowa,
ROW_NUMBER() OVER(ORDER BY col1 DESC) AS Rowd
from table1 ) tmp
where tmp.Rowa = tmp.Rowd
通常情况下,我们不仅需要为整个表计算Median,还需要为与某个ID相关的聚合计算Median。换句话说,计算表中每个ID的中位数,其中每个ID有许多记录。(基于@gdoron编辑的解决方案:性能良好,适用于许多SQL)
SELECT our_id, AVG(1.0 * our_val) as Median
FROM
( SELECT our_id, our_val,
COUNT(*) OVER (PARTITION BY our_id) AS cnt,
ROW_NUMBER() OVER (PARTITION BY our_id ORDER BY our_val) AS rnk
FROM our_table
) AS x
WHERE rnk IN ((cnt + 1)/2, (cnt + 2)/2) GROUP BY our_id;
希望能有所帮助。
关于你的问题,杰夫·阿特伍德已经给出了简单有效的解决方案。但是,如果您正在寻找一些计算中位数的替代方法,下面的SQL代码将帮助您。
create table employees(salary int); insert into employees values(8); insert into employees values(23); insert into employees values(45); insert into employees values(123); insert into employees values(93); insert into employees values(2342); insert into employees values(2238); select * from employees; declare @odd_even int; declare @cnt int; declare @middle_no int; set @cnt=(select count(*) from employees); set @middle_no=(@cnt/2)+1; select @odd_even=case when (@cnt%2=0) THEN -1 ELse 0 END ; select AVG(tbl.salary) from (select salary,ROW_NUMBER() over (order by salary) as rno from employees group by salary) tbl where tbl.rno=@middle_no or tbl.rno=@middle_no+@odd_even;
如果你想在MySQL中计算中位数,这个github链接会很有用。
这是我能想到的求中位数的最优解。示例中的名称基于Justin示例。确保表有索引 销售。SalesOrderHeader以索引列CustomerId和TotalDue的顺序存在。
SELECT
sohCount.CustomerId,
AVG(sohMid.TotalDue) as TotalDueMedian
FROM
(SELECT
soh.CustomerId,
COUNT(*) as NumberOfRows
FROM
Sales.SalesOrderHeader soh
GROUP BY soh.CustomerId) As sohCount
CROSS APPLY
(Select
soh.TotalDue
FROM
Sales.SalesOrderHeader soh
WHERE soh.CustomerId = sohCount.CustomerId
ORDER BY soh.TotalDue
OFFSET sohCount.NumberOfRows / 2 - ((sohCount.NumberOfRows + 1) % 2) ROWS
FETCH NEXT 1 + ((sohCount.NumberOfRows + 1) % 2) ROWS ONLY
) As sohMid
GROUP BY sohCount.CustomerId
更新
我有点不确定哪种方法性能最好,所以我比较了我的方法Justin Grants和Jeff Atwoods,在一个批量中运行基于这三种方法的查询,每个查询的批量成本为:
没有指数:
我的30% Justin Grants 13% Jeff Atwoods 58%
还有index
我的3%。 Justin Grants 10% Jeff Atwoods 87%
I tried to see how well the queries scale if you have index by creating more data from around 14 000 rows by a factor of 2 up to 512 which means in the end around 7,2 millions rows. Note I made sure CustomeId field where unique for each time I did a single copy, so the proportion of rows compared to unique instance of CustomerId was kept constant. While I was doing this I ran executions where I rebuilt index afterwards, and I noticed the results stabilized at around a factor of 128 with the data I had to these values:
我的3%。 贾斯汀·格兰特5% Jeff Atwoods 92%
我想知道,在保持惟一CustomerId不变的情况下,扩展行数会如何影响性能,因此我设置了一个新的测试,在其中执行了上述操作。现在,批成本比率并没有稳定下来,而是不断分化,每个CustomerId平均大约有20行,最后每个这样唯一的Id大约有10000行。数字如下:
我的4% 贾斯汀60% 杰夫斯35%
通过比较结果,我确保我正确地实现了每个方法。 我的结论是,只要索引存在,我使用的方法通常更快。还要注意,本文针对这个特定问题推荐使用这种方法https://www.microsoftpressstore.com/articles/article.aspx?p=2314819&seqNum=5
进一步提高对该查询的后续调用的性能的一种方法是在辅助表中持久化计数信息。您甚至可以通过一个触发器来维护它,该触发器更新并保存有关依赖于CustomerId的SalesOrderHeader行计数的信息,当然您也可以简单地存储中值。
中找到
这是查找属性中值的最简单方法。
Select round(S.salary,4) median from employee S
where (select count(salary) from station
where salary < S.salary ) = (select count(salary) from station
where salary > S.salary)
试试下面的逻辑来找出中位数:
考虑一个包含以下数字的表格: 1、1、2、3、4、5所示
中位数是2.5
with tempa as
(
select num,count(num) over() as Cnt,
row_number() over (order by num) as Rnum
from temp),
tempb as
(
select round(cnt/2) as ref_value
from tempa where mod(cnt,2)<>0
union all
select round(cnt/2) from tempa where mod(cnt,2)=0
union all
select round(cnt/2+1)
from tempa where mod(cnt,2)=0
)
select avg(num) from tempa
where rnum in (select * from tempb);
以下是我的解决方案:
with tempa as
(
select value,row_number() over (order by value) as Rn,/* Assigning a
row_number */
count(value) over () as Cnt /*Taking total count of the values */
from numbers
where value is not null /* Excluding the null values */
),
tempb as
(
/* Since we don't know whether the number of rows is odd or even, we shall
consider both the scenarios */
select round(cnt/2) as Ref from tempa where mod(cnt,2)=1
union all
select round(cnt/2) a Ref from tempa where mod(cnt,2)=0
union all
select round(cnt/2) + 1 as Ref from tempa where mod(cnt,2)=0
)
select avg(value) as Median_Value
from tempa where rn in
( select Ref from tempb);
使用COUNT聚合, 首先可以计算有多少行,并存储在一个名为@cnt的变量中。然后 你可以计算OFFSET-FETCH过滤器的参数来指定,基于数量排序, 要跳过多少行(偏移值)和筛选多少行(获取值)。
行数 跳过是(@cnt - 1) / 2。很明显,对于奇数,这个计算是正确的,因为 首先对单个中间值减去1,然后再除以2。
这也适用于偶数计数,因为表达式中使用的除法是 整数除法;所以,当一个偶数减去1时,你得到的是一个奇数。
When dividing that odd value by 2, the fraction part of the result (.5) is truncated. The number of rows to fetch is 2 - (@cnt % 2). The idea is that when the count is odd the result of the modulo operation is 1, and you need to fetch 1 row. When the count is even the result of the modulo operation is 0, and you need to fetch 2 rows. By subtracting the 1 or 0 result of the modulo operation from 2, you get the desired 1 or 2, respectively. Finally, to compute the median quantity, take the one or two result quantities, and apply an average after converting the input integer value to a numeric one as follows:
DECLARE @cnt AS INT = (SELECT COUNT(*) FROM [Sales].[production].[stocks]);
SELECT AVG(1.0 * quantity) AS median
FROM ( SELECT quantity
FROM [Sales].[production].[stocks]
ORDER BY quantity
OFFSET (@cnt - 1) / 2 ROWS FETCH NEXT 2 - @cnt % 2 ROWS ONLY ) AS D;
使用一条语句——一种方法是使用ROW_NUMBER(), COUNT()窗口函数并过滤子查询。下面是薪资中位数:
SELECT AVG(e_salary)
FROM
(SELECT
ROW_NUMBER() OVER(ORDER BY e_salary) as row_no,
e_salary,
(COUNT(*) OVER()+1)*0.5 AS row_half
FROM Employee) t
WHERE row_no IN (FLOOR(row_half),CEILING(row_half))
我在网上看到过类似的解决方案,使用地板和天花板,但尝试使用单一的语句。(编辑)
从员工表中得到工资的中位数
with cte as (select salary, ROW_NUMBER() over (order by salary asc) as num from employees)
select avg(salary) from cte where num in ((select (count(*)+1)/2 from employees), (select (count(*)+2)/2 from employees));
在我的解决方案表中是一个只有分数列的学生表,我正在计算分数的中位数,这个解决方案是基于SQL server 2019的
with total_c as ( --Total_c CTE counts total number of rows in a table
select count(*) as n from student
),
even as ( --Even CTE extract two middle rows if the number of rows are even
select marks from student
order by marks
offset (select n from total_c)/2 -1 rows
fetch next 2 rows only
),
odd as ( --Odd CTE extract middle row if the number of rows are odd
select marks from student
order by marks
offset (select n + 1 from total_c)/2 -1 rows
fetch next 1 rows only
)
--Case statement helps to select odd or even CTE based on number of rows
select
case when n%2 = 0 then (select avg(cast(marks as float)) from even)
else (select marks from odd)
end as med_marks
from total_c
这段代码有点长,但很容易理解
medii是有列val的表,它有数据集, Smedi是一个cte,它将列idx作为行号,val作为medi表中的'val',该表是升序排序的。 这是基本的数学,如果行号是奇数,那么它的中值来自smedi。 当它是偶数时,它是中间两个值的平均值。
with smedi(idx,vals) as(
select ROW_NUMBER() over(order by val),val from medi
)
select (case
when (select count(*) from medi)%2!=0 then (select vals from smedi where (((select count(*) from medi)/2))=idx)
else (select avg(vals) from smedi where idx in ((select count(*)/2 from medi),(select (count(*)/2)+1 from medi)))
end)
with t1 as (select *, row_number() over(order by ordqty) as rn,
count(*) over() as rc from ord_line)
select rn,* from t1 where rn in((rc+1)/2, (rc+2)/2);
它将计算偶数和奇数的中位数。
Ord_line是一个表 Ordqty是一个列