根据MSDN, Median在Transact-SQL中不能作为聚合函数使用。但是,我想知道是否可以创建此功能(使用create Aggregate函数、用户定义函数或其他方法)。
最好的方法(如果可能的话)是什么——允许在聚合查询中计算中值(假设是数值数据类型)?
根据MSDN, Median在Transact-SQL中不能作为聚合函数使用。但是,我想知道是否可以创建此功能(使用create Aggregate函数、用户定义函数或其他方法)。
最好的方法(如果可能的话)是什么——允许在聚合查询中计算中值(假设是数值数据类型)?
当前回答
这是我能想到的最简单的答案。我的数据处理得很好。如果你想排除某些值,只需在内部select中添加where子句。
SELECT TOP 1
ValueField AS MedianValue
FROM
(SELECT TOP(SELECT COUNT(1)/2 FROM tTABLE)
ValueField
FROM
tTABLE
ORDER BY
ValueField) A
ORDER BY
ValueField DESC
其他回答
这段代码有点长,但很容易理解
medii是有列val的表,它有数据集, Smedi是一个cte,它将列idx作为行号,val作为medi表中的'val',该表是升序排序的。 这是基本的数学,如果行号是奇数,那么它的中值来自smedi。 当它是偶数时,它是中间两个值的平均值。
with smedi(idx,vals) as(
select ROW_NUMBER() over(order by val),val from medi
)
select (case
when (select count(*) from medi)%2!=0 then (select vals from smedi where (((select count(*) from medi)/2))=idx)
else (select avg(vals) from smedi where idx in ((select count(*)/2 from medi),(select (count(*)/2)+1 from medi)))
end)
2019 UPDATE: In the 10 years since I wrote this answer, more solutions have been uncovered that may yield better results. Also, SQL Server releases since then (especially SQL 2012) have introduced new T-SQL features that can be used to calculate medians. SQL Server releases have also improved its query optimizer which may affect perf of various median solutions. Net-net, my original 2009 post is still OK but there may be better solutions on for modern SQL Server apps. Take a look at this article from 2012 which is a great resource: https://sqlperformance.com/2012/08/t-sql-queries/median
本文发现,以下模式比所有其他选择都要快得多,至少在他们测试的简单模式上是这样。该解决方案比测试的最慢解决方案(PERCENTILE_CONT)快373x (!!)注意,这个技巧需要两个独立的查询,这可能不是在所有情况下都可行。它还需要SQL 2012或更高版本。
DECLARE @c BIGINT = (SELECT COUNT(*) FROM dbo.EvenRows);
SELECT AVG(1.0 * val)
FROM (
SELECT val FROM dbo.EvenRows
ORDER BY val
OFFSET (@c - 1) / 2 ROWS
FETCH NEXT 1 + (1 - @c % 2) ROWS ONLY
) AS x;
当然,仅仅因为2012年对一个模式的一次测试产生了很好的结果,您的实际情况可能会有所不同,特别是如果您使用的是SQL Server 2014或更高版本。如果性能对中值计算很重要,我强烈建议尝试并测试那篇文章中推荐的几个选项,以确保您找到了最适合您的模式的选项。
我还会特别小心地使用(SQL Server 2012新增的)函数PERCENTILE_CONT,这是这个问题的其他答案之一中推荐的,因为上面链接的文章发现这个内置函数比最快的解决方案慢373x。在过去的7年里,这种差异可能已经得到了改善,但就我个人而言,在验证它与其他解决方案的性能之前,我不会在大型表上使用这个函数。
2009年的原始帖子如下:
有很多方法可以做到这一点,它们的性能差别很大。下面是一个优化得特别好的解决方案,包括median、ROW_NUMBERs和性能。当涉及到执行期间生成的实际I/ o时,这是一个特别优的解决方案——它看起来比其他解决方案成本更高,但实际上要快得多。
该页还包含对其他解决方案和性能测试细节的讨论。请注意,如果有多行具有相同的中位数列值,则使用唯一列作为消歧器。
就像所有的数据库性能场景一样,总是尝试在真实的硬件上用真实的数据测试解决方案——你永远不知道什么时候对SQL Server优化器的更改或环境中的某个特性会使正常快速的解决方案变慢。
SELECT
CustomerId,
AVG(TotalDue)
FROM
(
SELECT
CustomerId,
TotalDue,
-- SalesOrderId in the ORDER BY is a disambiguator to break ties
ROW_NUMBER() OVER (
PARTITION BY CustomerId
ORDER BY TotalDue ASC, SalesOrderId ASC) AS RowAsc,
ROW_NUMBER() OVER (
PARTITION BY CustomerId
ORDER BY TotalDue DESC, SalesOrderId DESC) AS RowDesc
FROM Sales.SalesOrderHeader SOH
) x
WHERE
RowAsc IN (RowDesc, RowDesc - 1, RowDesc + 1)
GROUP BY CustomerId
ORDER BY CustomerId;
试试下面的逻辑来找出中位数:
考虑一个包含以下数字的表格: 1、1、2、3、4、5所示
中位数是2.5
with tempa as
(
select num,count(num) over() as Cnt,
row_number() over (order by num) as Rnum
from temp),
tempb as
(
select round(cnt/2) as ref_value
from tempa where mod(cnt,2)<>0
union all
select round(cnt/2) from tempa where mod(cnt,2)=0
union all
select round(cnt/2+1)
from tempa where mod(cnt,2)=0
)
select avg(num) from tempa
where rnum in (select * from tempb);
with t1 as (select *, row_number() over(order by ordqty) as rn,
count(*) over() as rc from ord_line)
select rn,* from t1 where rn in((rc+1)/2, (rc+2)/2);
它将计算偶数和奇数的中位数。
Ord_line是一个表 Ordqty是一个列
通常情况下,我们不仅需要为整个表计算Median,还需要为与某个ID相关的聚合计算Median。换句话说,计算表中每个ID的中位数,其中每个ID有许多记录。(基于@gdoron编辑的解决方案:性能良好,适用于许多SQL)
SELECT our_id, AVG(1.0 * our_val) as Median
FROM
( SELECT our_id, our_val,
COUNT(*) OVER (PARTITION BY our_id) AS cnt,
ROW_NUMBER() OVER (PARTITION BY our_id ORDER BY our_val) AS rnk
FROM our_table
) AS x
WHERE rnk IN ((cnt + 1)/2, (cnt + 2)/2) GROUP BY our_id;
希望能有所帮助。