如何使一个Python类序列化?

class FileItem:
    def __init__(self, fname):
        self.fname = fname

尝试序列化为JSON:

>>> import json
>>> x = FileItem('/foo/bar')
>>> json.dumps(x)
TypeError: Object of type 'FileItem' is not JSON serializable

当前回答

我选择使用装饰器来解决datetime对象序列化问题。 这是我的代码:

#myjson.py
#Author: jmooremcc 7/16/2017

import json
from datetime import datetime, date, time, timedelta
"""
This module uses decorators to serialize date objects using json
The filename is myjson.py
In another module you simply add the following import statement:
    from myjson import json

json.dumps and json.dump will then correctly serialize datetime and date 
objects
"""

def json_serial(obj):
    """JSON serializer for objects not serializable by default json code"""

    if isinstance(obj, (datetime, date)):
        serial = str(obj)
        return serial
    raise TypeError ("Type %s not serializable" % type(obj))


def FixDumps(fn):
    def hook(obj):
        return fn(obj, default=json_serial)

    return hook

def FixDump(fn):
    def hook(obj, fp):
        return fn(obj,fp, default=json_serial)

    return hook


json.dumps=FixDumps(json.dumps)
json.dump=FixDump(json.dump)


if __name__=="__main__":
    today=datetime.now()
    data={'atime':today, 'greet':'Hello'}
    str=json.dumps(data)
    print str

通过导入上述模块,我的其他模块以正常的方式(没有指定默认关键字)使用json来序列化包含日期时间对象的数据。datetime序列化器代码会自动为json调用。Dumps和json.dump。

其他回答

除了Onur的答案,你可能想要处理如下的datetime类型。(以便处理:'datetime. time.)Datetime对象没有属性dict异常。)

def datetime_option(value):
    if isinstance(value, datetime.date):
        return value.timestamp()
    else:
        return value.__dict__

用法:

def toJSON(self):
    return json.dumps(self, default=datetime_option, sort_keys=True, indent=4)

解决这个问题有很多方法。'ObjDict' (pip install object)是另一个。重点是提供像javascript一样的对象,它也可以像字典一样最好地处理从JSON加载的数据,但还有其他功能也很有用。这为原始问题提供了另一种解决方案。

import simplejson

class User(object):
    def __init__(self, name, mail):
        self.name = name
        self.mail = mail

    def _asdict(self):
        return self.__dict__

print(simplejson.dumps(User('alice', 'alice@mail.com')))

如果使用标准json,则需要定义一个默认函数

import json
def default(o):
    return o._asdict()

print(json.dumps(User('alice', 'alice@mail.com'), default=default))

你知道预期产量是多少吗?例如,这个可以吗?

>>> f  = FileItem("/foo/bar")
>>> magic(f)
'{"fname": "/foo/bar"}'

在这种情况下,你只需调用json.dumps(f.__dict__)。

如果您想要更多自定义输出,那么您必须继承JSONEncoder并实现您自己的自定义序列化。

对于一个简单的例子,请参见下面。

>>> from json import JSONEncoder
>>> class MyEncoder(JSONEncoder):
        def default(self, o):
            return o.__dict__    

>>> MyEncoder().encode(f)
'{"fname": "/foo/bar"}'

然后你把这个类作为cls kwarg传递给json.dumps()方法:

json.dumps(cls=MyEncoder)

如果还想解码,则必须向JSONDecoder类提供一个自定义object_hook。例如:

>>> def from_json(json_object):
        if 'fname' in json_object:
            return FileItem(json_object['fname'])
>>> f = JSONDecoder(object_hook = from_json).decode('{"fname": "/foo/bar"}')
>>> f
<__main__.FileItem object at 0x9337fac>
>>> 

基于Quinten Cabo的回答:

def sterilize(obj):
    """Make an object more ameniable to dumping as json
    """
    if type(obj) in (str, float, int, bool, type(None)):
        return obj
    elif isinstance(obj, dict):
        return {k: sterilize(v) for k, v in obj.items()}
    list_ret = []
    dict_ret = {}
    for a in dir(obj):
        if a == '__iter__' and callable(obj.__iter__):
            list_ret.extend([sterilize(v) for v in obj])
        elif a == '__dict__':
            dict_ret.update({k: sterilize(v) for k, v in obj.__dict__.items() if k not in ['__module__', '__dict__', '__weakref__', '__doc__']})
        elif a not in ['__doc__', '__module__']:
            aval = getattr(obj, a)
            if type(aval) in (str, float, int, bool, type(None)):
                dict_ret[a] = aval
            elif a != '__class__' and a != '__objclass__' and isinstance(aval, type):
                dict_ret[a] = sterilize(aval)
    if len(list_ret) == 0:
        if len(dict_ret) == 0:
            return repr(obj)
        return dict_ret
    else:
        if len(dict_ret) == 0:
            return list_ret
    return (list_ret, dict_ret)

区别在于

Works for any iterable instead of just list and tuple (it works for NumPy arrays, etc.) Works for dynamic types (ones that contain a __dict__). Includes native types float and None so they don't get converted to string. Classes that have __dict__ and members will mostly work (if the __dict__ and member names collide, you will only get one - likely the member) Classes that are lists and have members will look like a tuple of the list and a dictionary Python3 (that isinstance() call may be the only thing that needs changing)