如何使一个Python类序列化?

class FileItem:
    def __init__(self, fname):
        self.fname = fname

尝试序列化为JSON:

>>> import json
>>> x = FileItem('/foo/bar')
>>> json.dumps(x)
TypeError: Object of type 'FileItem' is not JSON serializable

当前回答

Jsonweb似乎是我的最佳解决方案。参见http://www.jsonweb.info/en/latest/

from jsonweb.encode import to_object, dumper

@to_object()
class DataModel(object):
  def __init__(self, id, value):
   self.id = id
   self.value = value

>>> data = DataModel(5, "foo")
>>> dumper(data)
'{"__type__": "DataModel", "id": 5, "value": "foo"}'

其他回答

为了在10年前的火灾中再添加一个日志,我还将为这个任务提供数据类向导,假设您使用的是Python 3.6+。这可以很好地用于数据类,这实际上是3.7+版本的python内置模块。

dataclass-wizard库将把对象(及其所有属性递归地)转换为dict,并使用fromdict使反向(反序列化)非常简单。另外,这里是PyPi链接:https://pypi.org/project/dataclass-wizard/。

import dataclass_wizard
import dataclasses

@dataclasses.dataclass
class A:
    hello: str
    a_field: int

obj = A('world', 123)
a_dict = dataclass_wizard.asdict(obj)
# {'hello': 'world', 'aField': 123}

或者如果你想要一个字符串:

a_str = jsons.dumps(dataclass_wizard.asdict(obj))

或者您的类是否从dataclass_wizard扩展。JSONWizard:

a_str = your_object.to_json()

最后,标准库还支持Union类型的数据类,这基本上意味着可以将dict反序列化为类C1或C2的对象。例如:

from dataclasses import dataclass

from dataclass_wizard import JSONWizard

@dataclass
class Outer(JSONWizard):

    class _(JSONWizard.Meta):
        tag_key = 'tag'
        auto_assign_tags = True

    my_string: str
    inner: 'A | B'  # alternate syntax: `inner: typing.Union['A', 'B']`

@dataclass
class A:
    my_field: int

@dataclass
class B:
    my_field: str


my_dict = {'myString': 'test', 'inner': {'tag': 'B', 'myField': 'test'}}
obj = Outer.from_dict(my_dict)

# True
assert repr(obj) == "Outer(my_string='test', inner=B(my_field='test'))"

obj.to_json()
# {"myString": "test", "inner": {"myField": "test", "tag": "B"}}

大多数答案都涉及更改对json.dumps()的调用,这并不总是可能的或可取的(例如,它可能发生在框架组件内部)。

如果你希望能够按原样调用json.dumps(obj),那么一个简单的解决方案是从dict继承:

class FileItem(dict):
    def __init__(self, fname):
        dict.__init__(self, fname=fname)

f = FileItem('tasks.txt')
json.dumps(f)  #No need to change anything here

如果你的类只是基本的数据表示,这是可行的,对于更棘手的事情,你总是可以显式地设置键。

如果你不介意为它安装一个包,你可以使用json-tricks:

pip install json-tricks

之后,你只需要从json_tricks导入dump(s)而不是json,它通常会工作:

from json_tricks import dumps
json_str = dumps(cls_instance, indent=4)

这将给

{
        "__instance_type__": [
                "module_name.test_class",
                "MyTestCls"
        ],
        "attributes": {
                "attr": "val",
                "dct_attr": {
                        "hello": 42
                }
        }
}

基本上就是这样!


这在一般情况下会很有效。有一些例外,例如,如果特殊的事情发生在__new__中,或者更多的元类魔法正在发生。

显然加载也可以(否则有什么意义):

from json_tricks import loads
json_str = loads(json_str)

这确实假设module_name.test_class。MyTestCls可以导入,并且没有以不兼容的方式进行更改。您将返回一个实例,而不是某个字典或其他东西,它应该是您转储的实例的相同副本。

如果你想自定义一些东西是如何(反)序列化的,你可以添加特殊的方法到你的类,像这样:

class CustomEncodeCls:
        def __init__(self):
                self.relevant = 42
                self.irrelevant = 37

        def __json_encode__(self):
                # should return primitive, serializable types like dict, list, int, string, float...
                return {'relevant': self.relevant}

        def __json_decode__(self, **attrs):
                # should initialize all properties; note that __init__ is not called implicitly
                self.relevant = attrs['relevant']
                self.irrelevant = 12

其中仅序列化部分属性参数,作为示例。

作为免费的奖励,你可以获得numpy数组、日期和时间、有序地图的(反)序列化,以及在json中包含注释的能力。

免责声明:我创建了json_tricks,因为我遇到了与您相同的问题。

如果你正在使用Python3.5+,你可以使用jsons。(PyPi: https://pypi.org/project/jsons/)它将把你的对象(及其所有属性递归地)转换为字典。

import jsons

a_dict = jsons.dump(your_object)

或者如果你想要一个字符串:

a_str = jsons.dumps(your_object)

或者你的类实现了jsons。JsonSerializable:

a_dict = your_object.json

一个非常简单的一行程序解决方案

import json

json.dumps(your_object, default=lambda __o: __o.__dict__)

结束!

下面是一个测试。

import json
from dataclasses import dataclass


@dataclass
class Company:
    id: int
    name: str

@dataclass
class User:
    id: int
    name: str
    email: str
    company: Company


company = Company(id=1, name="Example Ltd")
user = User(id=1, name="John Doe", email="john@doe.net", company=company)


json.dumps(user, default=lambda __o: __o.__dict__)

输出:

{
  "id": 1, 
  "name": "John Doe", 
  "email": "john@doe.net", 
  "company": {
    "id": 1, 
    "name": "Example Ltd"
  }
}