如何使一个Python类序列化?
class FileItem:
def __init__(self, fname):
self.fname = fname
尝试序列化为JSON:
>>> import json
>>> x = FileItem('/foo/bar')
>>> json.dumps(x)
TypeError: Object of type 'FileItem' is not JSON serializable
如何使一个Python类序列化?
class FileItem:
def __init__(self, fname):
self.fname = fname
尝试序列化为JSON:
>>> import json
>>> x = FileItem('/foo/bar')
>>> json.dumps(x)
TypeError: Object of type 'FileItem' is not JSON serializable
当前回答
Jsonweb似乎是我的最佳解决方案。参见http://www.jsonweb.info/en/latest/
from jsonweb.encode import to_object, dumper
@to_object()
class DataModel(object):
def __init__(self, id, value):
self.id = id
self.value = value
>>> data = DataModel(5, "foo")
>>> dumper(data)
'{"__type__": "DataModel", "id": 5, "value": "foo"}'
其他回答
前几天我遇到了这个问题,并为Python对象实现了一个更通用的Encoder版本,可以处理嵌套对象和继承字段:
import json
import inspect
class ObjectEncoder(json.JSONEncoder):
def default(self, obj):
if hasattr(obj, "to_json"):
return self.default(obj.to_json())
elif hasattr(obj, "__dict__"):
d = dict(
(key, value)
for key, value in inspect.getmembers(obj)
if not key.startswith("__")
and not inspect.isabstract(value)
and not inspect.isbuiltin(value)
and not inspect.isfunction(value)
and not inspect.isgenerator(value)
and not inspect.isgeneratorfunction(value)
and not inspect.ismethod(value)
and not inspect.ismethoddescriptor(value)
and not inspect.isroutine(value)
)
return self.default(d)
return obj
例子:
class C(object):
c = "NO"
def to_json(self):
return {"c": "YES"}
class B(object):
b = "B"
i = "I"
def __init__(self, y):
self.y = y
def f(self):
print "f"
class A(B):
a = "A"
def __init__(self):
self.b = [{"ab": B("y")}]
self.c = C()
print json.dumps(A(), cls=ObjectEncoder, indent=2, sort_keys=True)
结果:
{
"a": "A",
"b": [
{
"ab": {
"b": "B",
"i": "I",
"y": "y"
}
}
],
"c": {
"c": "YES"
},
"i": "I"
}
只需要像这样添加to_json方法到你的类中:
def to_json(self):
return self.message # or how you want it to be serialized
然后将这段代码(来自这个答案)添加到所有内容的顶部:
from json import JSONEncoder
def _default(self, obj):
return getattr(obj.__class__, "to_json", _default.default)(obj)
_default.default = JSONEncoder().default
JSONEncoder.default = _default
这将会在导入json模块时monkey-patch,所以 JSONEncoder.default()自动检查特殊的to_json() 方法,并使用它对找到的对象进行编码。
就像Onur说的,但是这次你不需要更新项目中的每个json.dumps()。
如果你能够安装一个软件包,我建议你试试dill,它在我的项目中工作得很好。这个包的一个优点是它具有与pickle相同的接口,因此如果您已经在项目中使用了pickle,则可以简单地替换为dill并查看脚本是否运行,而无需更改任何代码。所以这是一个非常便宜的解决方案!
(完全反披露:我与莳萝项目没有任何关联,也从未参与过。)
安装包:
pip install dill
然后编辑你的代码导入莳萝而不是pickle:
# import pickle
import dill as pickle
运行脚本,看看它是否有效。(如果是的话,你可能想要清理你的代码,这样你就不再隐藏pickle模块的名字了!)
关于dill可以和不能序列化的数据类型的一些细节,来自项目页面:
dill can pickle the following standard types: none, type, bool, int, long, float, complex, str, unicode, tuple, list, dict, file, buffer, builtin, both old and new style classes, instances of old and new style classes, set, frozenset, array, functions, exceptions dill can also pickle more ‘exotic’ standard types: functions with yields, nested functions, lambdas, cell, method, unboundmethod, module, code, methodwrapper, dictproxy, methoddescriptor, getsetdescriptor, memberdescriptor, wrapperdescriptor, xrange, slice, notimplemented, ellipsis, quit dill cannot yet pickle these standard types: frame, generator, traceback
我最喜欢Lost Koder的方法。当我试图序列化成员/方法不可序列化的更复杂的对象时,我遇到了问题。这是我的实现,工作在更多的对象:
class Serializer(object):
@staticmethod
def serialize(obj):
def check(o):
for k, v in o.__dict__.items():
try:
_ = json.dumps(v)
o.__dict__[k] = v
except TypeError:
o.__dict__[k] = str(v)
return o
return json.dumps(check(obj).__dict__, indent=2)
正如在许多其他答案中提到的,您可以将函数传递给json。转储将不是默认支持的类型之一的对象转换为受支持的类型。令人惊讶的是,他们都没有提到最简单的情况,即使用内置函数vars将对象转换为包含其所有属性的dict:
json.dumps(obj, default=vars)
注意,这只涵盖了基本的情况,如果你需要对某些类型进行更具体的序列化(例如排除某些属性或没有__dict__属性的对象),你需要使用自定义函数或JSONEncoder,如其他答案中所述。