如何使一个Python类序列化?

class FileItem:
    def __init__(self, fname):
        self.fname = fname

尝试序列化为JSON:

>>> import json
>>> x = FileItem('/foo/bar')
>>> json.dumps(x)
TypeError: Object of type 'FileItem' is not JSON serializable

当前回答

一个非常简单的一行程序解决方案

import json

json.dumps(your_object, default=lambda __o: __o.__dict__)

结束!

下面是一个测试。

import json
from dataclasses import dataclass


@dataclass
class Company:
    id: int
    name: str

@dataclass
class User:
    id: int
    name: str
    email: str
    company: Company


company = Company(id=1, name="Example Ltd")
user = User(id=1, name="John Doe", email="john@doe.net", company=company)


json.dumps(user, default=lambda __o: __o.__dict__)

输出:

{
  "id": 1, 
  "name": "John Doe", 
  "email": "john@doe.net", 
  "company": {
    "id": 1, 
    "name": "Example Ltd"
  }
}

其他回答

加拉科给出了一个非常简洁的答案。我需要修复一些小的东西,但这是有效的:

Code

# Your custom class
class MyCustom(object):
    def __json__(self):
        return {
            'a': self.a,
            'b': self.b,
            '__python__': 'mymodule.submodule:MyCustom.from_json',
        }

    to_json = __json__  # supported by simplejson

    @classmethod
    def from_json(cls, json):
        obj = cls()
        obj.a = json['a']
        obj.b = json['b']
        return obj

# Dumping and loading
import simplejson

obj = MyCustom()
obj.a = 3
obj.b = 4

json = simplejson.dumps(obj, for_json=True)

# Two-step loading
obj2_dict = simplejson.loads(json)
obj2 = MyCustom.from_json(obj2_dict)

# Make sure we have the correct thing
assert isinstance(obj2, MyCustom)
assert obj2.__dict__ == obj.__dict__

注意,加载需要两个步骤。现在是__python__属性 未使用。

这种情况有多普遍?

使用AlJohri的方法,我检查了流行的方法:

序列化(Python -> JSON):

To_json: 266,595 on 2018-06-27 toJSON: 96,307 on 2018-06-27 __json__: 8504 on 2018-06-27 For_json: 6937 on 2018-06-27

反序列化(JSON -> Python):

From_json: 226,101 on 2018-06-27

你知道预期产量是多少吗?例如,这个可以吗?

>>> f  = FileItem("/foo/bar")
>>> magic(f)
'{"fname": "/foo/bar"}'

在这种情况下,你只需调用json.dumps(f.__dict__)。

如果您想要更多自定义输出,那么您必须继承JSONEncoder并实现您自己的自定义序列化。

对于一个简单的例子,请参见下面。

>>> from json import JSONEncoder
>>> class MyEncoder(JSONEncoder):
        def default(self, o):
            return o.__dict__    

>>> MyEncoder().encode(f)
'{"fname": "/foo/bar"}'

然后你把这个类作为cls kwarg传递给json.dumps()方法:

json.dumps(cls=MyEncoder)

如果还想解码,则必须向JSONDecoder类提供一个自定义object_hook。例如:

>>> def from_json(json_object):
        if 'fname' in json_object:
            return FileItem(json_object['fname'])
>>> f = JSONDecoder(object_hook = from_json).decode('{"fname": "/foo/bar"}')
>>> f
<__main__.FileItem object at 0x9337fac>
>>> 

一个非常简单的一行程序解决方案

import json

json.dumps(your_object, default=lambda __o: __o.__dict__)

结束!

下面是一个测试。

import json
from dataclasses import dataclass


@dataclass
class Company:
    id: int
    name: str

@dataclass
class User:
    id: int
    name: str
    email: str
    company: Company


company = Company(id=1, name="Example Ltd")
user = User(id=1, name="John Doe", email="john@doe.net", company=company)


json.dumps(user, default=lambda __o: __o.__dict__)

输出:

{
  "id": 1, 
  "name": "John Doe", 
  "email": "john@doe.net", 
  "company": {
    "id": 1, 
    "name": "Example Ltd"
  }
}

Json在它可以打印的对象方面受到限制,而jsonpickle(你可能需要一个PIP安装jsonpickle)在它不能缩进文本方面受到限制。如果你想检查一个你不能改变类的对象的内容,我仍然找不到比:

 import json
 import jsonpickle
 ...
 print  json.dumps(json.loads(jsonpickle.encode(object)), indent=2)

注意:他们仍然不能打印对象方法。

class DObject(json.JSONEncoder):
    def delete_not_related_keys(self, _dict):
        for key in ["skipkeys", "ensure_ascii", "check_circular", "allow_nan", "sort_keys", "indent"]:
            try:
                del _dict[key]
            except:
                continue

    def default(self, o):
        if hasattr(o, '__dict__'):
            my_dict = o.__dict__.copy()
            self.delete_not_related_keys(my_dict)
            return my_dict
        else:
            return o

a = DObject()
a.name = 'abdul wahid'
b = DObject()
b.name = a

print(json.dumps(b, cls=DObject))