如何使一个Python类序列化?

class FileItem:
    def __init__(self, fname):
        self.fname = fname

尝试序列化为JSON:

>>> import json
>>> x = FileItem('/foo/bar')
>>> json.dumps(x)
TypeError: Object of type 'FileItem' is not JSON serializable

当前回答

Json在它可以打印的对象方面受到限制,而jsonpickle(你可能需要一个PIP安装jsonpickle)在它不能缩进文本方面受到限制。如果你想检查一个你不能改变类的对象的内容,我仍然找不到比:

 import json
 import jsonpickle
 ...
 print  json.dumps(json.loads(jsonpickle.encode(object)), indent=2)

注意:他们仍然不能打印对象方法。

其他回答

下面是一个简单功能的简单解决方案:

.toJSON()方法

实现一个序列化器方法,而不是一个JSON可序列化类:

import json

class Object:
    def toJSON(self):
        return json.dumps(self, default=lambda o: o.__dict__, 
            sort_keys=True, indent=4)

所以你只需调用它来序列化:

me = Object()
me.name = "Onur"
me.age = 35
me.dog = Object()
me.dog.name = "Apollo"

print(me.toJSON())

将输出:

{
    "age": 35,
    "dog": {
        "name": "Apollo"
    },
    "name": "Onur"
}

TLDR:复制-粘贴下面的选项1或选项2

真正的/完整的答案:让Pythons json模块与你的类一起工作

AKA,求解:json。dump ({"thing": YOUR_CLASS()})


解释:

Yes, a good reliable solution exists No, there is no python "official" solution By official solution, I mean there is no way (as of 2023) to add a method to your class (like toJSON in JavaScript) and/or no way to register your class with the built-in json module. When something like json.dumps([1,2, your_obj]) is executed, python doesn't check a lookup table or object method. I'm not sure why other answers don't explain this The closest official approach is probably andyhasit's answer which is to inherit from a dictionary. However, inheriting from a dictionary doesn't work very well for many custom classes like AdvancedDateTime, or pytorch tensors. The ideal workaround is this: Mutate json.dumps (affects everywhere, even pip modules that import json) Add def __json__(self) method to your class



选项1:让一个模块来做补丁


PIP安装json-fix (扩展+包装版FancyJohn的回答,谢谢@FancyJohn)

your_class_definition.py

import json_fix

class YOUR_CLASS:
    def __json__(self):
        # YOUR CUSTOM CODE HERE
        #    you probably just want to do:
        #        return self.__dict__
        return "a built-in object that is naturally json-able"

这是它。

使用示例:

from your_class_definition import YOUR_CLASS
import json

json.dumps([1,2, YOUR_CLASS()], indent=0)
# '[\n1,\n2,\n"a built-in object that is naturally json-able"\n]'

生成json。dump适用于Numpy数组,Pandas DataFrames和其他第三方对象,请参阅模块(只有大约2行代码,但需要解释)。




它是如何工作的?嗯…

选项2:补丁json。把你自己


注意:这种方法是简化的,它在已知的edgcase上失败(例如:如果你的自定义类继承了dict或其他内置类),并且它错过了控制外部类的json行为(numpy数组,datetime, dataframes,张量等)。

some_file_thats_imported_before_your_class_definitions.py

# Step: 1
# create the patch
from json import JSONEncoder
def wrapped_default(self, obj):
    return getattr(obj.__class__, "__json__", wrapped_default.default)(obj)
wrapped_default.default = JSONEncoder().default
   
# apply the patch
JSONEncoder.original_default = JSONEncoder.default
JSONEncoder.default = wrapped_default

your_class_definition.py

# Step 2
class YOUR_CLASS:
    def __json__(self, **options):
        # YOUR CUSTOM CODE HERE
        #    you probably just want to do:
        #        return self.__dict__
        return "a built-in object that is natually json-able"

_

其他答案似乎都是“序列化自定义对象的最佳实践/方法”

在这里的文档中已经介绍过了(搜索“complex”可以找到编码复数的例子)

为了在10年前的火灾中再添加一个日志,我还将为这个任务提供数据类向导,假设您使用的是Python 3.6+。这可以很好地用于数据类,这实际上是3.7+版本的python内置模块。

dataclass-wizard库将把对象(及其所有属性递归地)转换为dict,并使用fromdict使反向(反序列化)非常简单。另外,这里是PyPi链接:https://pypi.org/project/dataclass-wizard/。

import dataclass_wizard
import dataclasses

@dataclasses.dataclass
class A:
    hello: str
    a_field: int

obj = A('world', 123)
a_dict = dataclass_wizard.asdict(obj)
# {'hello': 'world', 'aField': 123}

或者如果你想要一个字符串:

a_str = jsons.dumps(dataclass_wizard.asdict(obj))

或者您的类是否从dataclass_wizard扩展。JSONWizard:

a_str = your_object.to_json()

最后,标准库还支持Union类型的数据类,这基本上意味着可以将dict反序列化为类C1或C2的对象。例如:

from dataclasses import dataclass

from dataclass_wizard import JSONWizard

@dataclass
class Outer(JSONWizard):

    class _(JSONWizard.Meta):
        tag_key = 'tag'
        auto_assign_tags = True

    my_string: str
    inner: 'A | B'  # alternate syntax: `inner: typing.Union['A', 'B']`

@dataclass
class A:
    my_field: int

@dataclass
class B:
    my_field: str


my_dict = {'myString': 'test', 'inner': {'tag': 'B', 'myField': 'test'}}
obj = Outer.from_dict(my_dict)

# True
assert repr(obj) == "Outer(my_string='test', inner=B(my_field='test'))"

obj.to_json()
# {"myString": "test", "inner": {"myField": "test", "tag": "B"}}

只需要像这样添加to_json方法到你的类中:

def to_json(self):
  return self.message # or how you want it to be serialized

然后将这段代码(来自这个答案)添加到所有内容的顶部:

from json import JSONEncoder

def _default(self, obj):
    return getattr(obj.__class__, "to_json", _default.default)(obj)

_default.default = JSONEncoder().default
JSONEncoder.default = _default

这将会在导入json模块时monkey-patch,所以 JSONEncoder.default()自动检查特殊的to_json() 方法,并使用它对找到的对象进行编码。

就像Onur说的,但是这次你不需要更新项目中的每个json.dumps()。

如果你不介意为它安装一个包,你可以使用json-tricks:

pip install json-tricks

之后,你只需要从json_tricks导入dump(s)而不是json,它通常会工作:

from json_tricks import dumps
json_str = dumps(cls_instance, indent=4)

这将给

{
        "__instance_type__": [
                "module_name.test_class",
                "MyTestCls"
        ],
        "attributes": {
                "attr": "val",
                "dct_attr": {
                        "hello": 42
                }
        }
}

基本上就是这样!


这在一般情况下会很有效。有一些例外,例如,如果特殊的事情发生在__new__中,或者更多的元类魔法正在发生。

显然加载也可以(否则有什么意义):

from json_tricks import loads
json_str = loads(json_str)

这确实假设module_name.test_class。MyTestCls可以导入,并且没有以不兼容的方式进行更改。您将返回一个实例,而不是某个字典或其他东西,它应该是您转储的实例的相同副本。

如果你想自定义一些东西是如何(反)序列化的,你可以添加特殊的方法到你的类,像这样:

class CustomEncodeCls:
        def __init__(self):
                self.relevant = 42
                self.irrelevant = 37

        def __json_encode__(self):
                # should return primitive, serializable types like dict, list, int, string, float...
                return {'relevant': self.relevant}

        def __json_decode__(self, **attrs):
                # should initialize all properties; note that __init__ is not called implicitly
                self.relevant = attrs['relevant']
                self.irrelevant = 12

其中仅序列化部分属性参数,作为示例。

作为免费的奖励,你可以获得numpy数组、日期和时间、有序地图的(反)序列化,以及在json中包含注释的能力。

免责声明:我创建了json_tricks,因为我遇到了与您相同的问题。