如何使一个Python类序列化?
class FileItem:
def __init__(self, fname):
self.fname = fname
尝试序列化为JSON:
>>> import json
>>> x = FileItem('/foo/bar')
>>> json.dumps(x)
TypeError: Object of type 'FileItem' is not JSON serializable
如何使一个Python类序列化?
class FileItem:
def __init__(self, fname):
self.fname = fname
尝试序列化为JSON:
>>> import json
>>> x = FileItem('/foo/bar')
>>> json.dumps(x)
TypeError: Object of type 'FileItem' is not JSON serializable
当前回答
如果你能够安装一个软件包,我建议你试试dill,它在我的项目中工作得很好。这个包的一个优点是它具有与pickle相同的接口,因此如果您已经在项目中使用了pickle,则可以简单地替换为dill并查看脚本是否运行,而无需更改任何代码。所以这是一个非常便宜的解决方案!
(完全反披露:我与莳萝项目没有任何关联,也从未参与过。)
安装包:
pip install dill
然后编辑你的代码导入莳萝而不是pickle:
# import pickle
import dill as pickle
运行脚本,看看它是否有效。(如果是的话,你可能想要清理你的代码,这样你就不再隐藏pickle模块的名字了!)
关于dill可以和不能序列化的数据类型的一些细节,来自项目页面:
dill can pickle the following standard types: none, type, bool, int, long, float, complex, str, unicode, tuple, list, dict, file, buffer, builtin, both old and new style classes, instances of old and new style classes, set, frozenset, array, functions, exceptions dill can also pickle more ‘exotic’ standard types: functions with yields, nested functions, lambdas, cell, method, unboundmethod, module, code, methodwrapper, dictproxy, methoddescriptor, getsetdescriptor, memberdescriptor, wrapperdescriptor, xrange, slice, notimplemented, ellipsis, quit dill cannot yet pickle these standard types: frame, generator, traceback
其他回答
如果你能够安装一个软件包,我建议你试试dill,它在我的项目中工作得很好。这个包的一个优点是它具有与pickle相同的接口,因此如果您已经在项目中使用了pickle,则可以简单地替换为dill并查看脚本是否运行,而无需更改任何代码。所以这是一个非常便宜的解决方案!
(完全反披露:我与莳萝项目没有任何关联,也从未参与过。)
安装包:
pip install dill
然后编辑你的代码导入莳萝而不是pickle:
# import pickle
import dill as pickle
运行脚本,看看它是否有效。(如果是的话,你可能想要清理你的代码,这样你就不再隐藏pickle模块的名字了!)
关于dill可以和不能序列化的数据类型的一些细节,来自项目页面:
dill can pickle the following standard types: none, type, bool, int, long, float, complex, str, unicode, tuple, list, dict, file, buffer, builtin, both old and new style classes, instances of old and new style classes, set, frozenset, array, functions, exceptions dill can also pickle more ‘exotic’ standard types: functions with yields, nested functions, lambdas, cell, method, unboundmethod, module, code, methodwrapper, dictproxy, methoddescriptor, getsetdescriptor, memberdescriptor, wrapperdescriptor, xrange, slice, notimplemented, ellipsis, quit dill cannot yet pickle these standard types: frame, generator, traceback
大多数答案都涉及更改对json.dumps()的调用,这并不总是可能的或可取的(例如,它可能发生在框架组件内部)。
如果你希望能够按原样调用json.dumps(obj),那么一个简单的解决方案是从dict继承:
class FileItem(dict):
def __init__(self, fname):
dict.__init__(self, fname=fname)
f = FileItem('tasks.txt')
json.dumps(f) #No need to change anything here
如果你的类只是基本的数据表示,这是可行的,对于更棘手的事情,你总是可以显式地设置键。
class DObject(json.JSONEncoder):
def delete_not_related_keys(self, _dict):
for key in ["skipkeys", "ensure_ascii", "check_circular", "allow_nan", "sort_keys", "indent"]:
try:
del _dict[key]
except:
continue
def default(self, o):
if hasattr(o, '__dict__'):
my_dict = o.__dict__.copy()
self.delete_not_related_keys(my_dict)
return my_dict
else:
return o
a = DObject()
a.name = 'abdul wahid'
b = DObject()
b.name = a
print(json.dumps(b, cls=DObject))
基于Quinten Cabo的回答:
def sterilize(obj):
"""Make an object more ameniable to dumping as json
"""
if type(obj) in (str, float, int, bool, type(None)):
return obj
elif isinstance(obj, dict):
return {k: sterilize(v) for k, v in obj.items()}
list_ret = []
dict_ret = {}
for a in dir(obj):
if a == '__iter__' and callable(obj.__iter__):
list_ret.extend([sterilize(v) for v in obj])
elif a == '__dict__':
dict_ret.update({k: sterilize(v) for k, v in obj.__dict__.items() if k not in ['__module__', '__dict__', '__weakref__', '__doc__']})
elif a not in ['__doc__', '__module__']:
aval = getattr(obj, a)
if type(aval) in (str, float, int, bool, type(None)):
dict_ret[a] = aval
elif a != '__class__' and a != '__objclass__' and isinstance(aval, type):
dict_ret[a] = sterilize(aval)
if len(list_ret) == 0:
if len(dict_ret) == 0:
return repr(obj)
return dict_ret
else:
if len(dict_ret) == 0:
return list_ret
return (list_ret, dict_ret)
区别在于
Works for any iterable instead of just list and tuple (it works for NumPy arrays, etc.) Works for dynamic types (ones that contain a __dict__). Includes native types float and None so they don't get converted to string. Classes that have __dict__ and members will mostly work (if the __dict__ and member names collide, you will only get one - likely the member) Classes that are lists and have members will look like a tuple of the list and a dictionary Python3 (that isinstance() call may be the only thing that needs changing)
我们经常在日志文件中转储JSON格式的复杂字典。虽然大多数字段携带重要信息,但我们不太关心内置的类对象(例如子进程)。Popen对象)。由于存在这些不可序列化的对象,对json.dumps()的调用会失败。
为了解决这个问题,我构建了一个小函数来转储对象的字符串表示形式,而不是转储对象本身。如果您正在处理的数据结构嵌套太多,您可以指定嵌套的最大级别/深度。
from time import time
def safe_serialize(obj , max_depth = 2):
max_level = max_depth
def _safe_serialize(obj , current_level = 0):
nonlocal max_level
# If it is a list
if isinstance(obj , list):
if current_level >= max_level:
return "[...]"
result = list()
for element in obj:
result.append(_safe_serialize(element , current_level + 1))
return result
# If it is a dict
elif isinstance(obj , dict):
if current_level >= max_level:
return "{...}"
result = dict()
for key , value in obj.items():
result[f"{_safe_serialize(key , current_level + 1)}"] = _safe_serialize(value , current_level + 1)
return result
# If it is an object of builtin class
elif hasattr(obj , "__dict__"):
if hasattr(obj , "__repr__"):
result = f"{obj.__repr__()}_{int(time())}"
else:
try:
result = f"{obj.__class__.__name__}_object_{int(time())}"
except:
result = f"object_{int(time())}"
return result
# If it is anything else
else:
return obj
return _safe_serialize(obj)
由于字典也可以有不可序列化的键,转储它们的类名或对象表示将导致所有键都具有相同的名称,这将抛出错误,因为所有键都需要有唯一的名称,这就是为什么当前时间Since epoch被int(time())附加到对象名称。
可以使用以下具有不同级别/深度的嵌套字典来测试该函数
d = {
"a" : {
"a1" : {
"a11" : {
"a111" : "some_value" ,
"a112" : "some_value" ,
} ,
"a12" : {
"a121" : "some_value" ,
"a122" : "some_value" ,
} ,
} ,
"a2" : {
"a21" : {
"a211" : "some_value" ,
"a212" : "some_value" ,
} ,
"a22" : {
"a221" : "some_value" ,
"a222" : "some_value" ,
} ,
} ,
} ,
"b" : {
"b1" : {
"b11" : {
"b111" : "some_value" ,
"b112" : "some_value" ,
} ,
"b12" : {
"b121" : "some_value" ,
"b122" : "some_value" ,
} ,
} ,
"b2" : {
"b21" : {
"b211" : "some_value" ,
"b212" : "some_value" ,
} ,
"b22" : {
"b221" : "some_value" ,
"b222" : "some_value" ,
} ,
} ,
} ,
"c" : subprocess.Popen("ls -l".split() , stdout = subprocess.PIPE , stderr = subprocess.PIPE) ,
}
执行以下命令将会得到-
print("LEVEL 3")
print(json.dumps(safe_serialize(d , 3) , indent = 4))
print("\n\n\nLEVEL 2")
print(json.dumps(safe_serialize(d , 2) , indent = 4))
print("\n\n\nLEVEL 1")
print(json.dumps(safe_serialize(d , 1) , indent = 4))
结果:
LEVEL 3
{
"a": {
"a1": {
"a11": "{...}",
"a12": "{...}"
},
"a2": {
"a21": "{...}",
"a22": "{...}"
}
},
"b": {
"b1": {
"b11": "{...}",
"b12": "{...}"
},
"b2": {
"b21": "{...}",
"b22": "{...}"
}
},
"c": "<Popen: returncode: None args: ['ls', '-l']>"
}
LEVEL 2
{
"a": {
"a1": "{...}",
"a2": "{...}"
},
"b": {
"b1": "{...}",
"b2": "{...}"
},
"c": "<Popen: returncode: None args: ['ls', '-l']>"
}
LEVEL 1
{
"a": "{...}",
"b": "{...}",
"c": "<Popen: returncode: None args: ['ls', '-l']>"
}
[注意]:仅在不关心内置类对象的序列化时使用此选项。